Volume 22, Issue 4 (Winter 2025)                   bloodj 2025, 22(4): 285-296 | Back to browse issues page

Ethics code: IR.SBMU.REC.1401.005

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hedayati S, Rahimi A R, Aghaei F, Mohsenzadeh M. Modulatory Effects of High-Intensity Interval Training on the Mobilization of Hematopoietic Stem Cell and Related Gene Expression (CXCL12 and SCF) in Autologous Transplant Patients. bloodj 2025; 22 (4) :285-296
URL: http://bloodjournal.ir/article-1-1592-en.html
Abstract:   (176 Views)
A B S T R A C T
Background and Objectives
This study aimed to evaluate the impact of a single session of high-intensity interval training (HIIT) on hematopoietic stem cell (HSC) mobilization and on the expression of genes regulating HSC homing (SCF and CXCL12) in autologous stem cell transplantation candidates.
Materials and Methods
This study is a quasi-experimental applied research in which 20 patients with Hodgkin’s or non-Hodgkin’s lymphoma were matched based on age, sex, body mass index, and physical fitness status and allocated into two control (n=10) and HIIT (n=10) groups. The HIIT group completed a protocol of 12×1-minute intervals at 100% VO₂peak, six hours after receiving the last dose of granulocyte colony-stimulating factor (G-CSF). The control group remained seated without performing any exercise. Peripheral Blood sampling was performed in both groups before and immediately after the intervention, and apheresis samples were also taken immediately after the intervention. Peripheral blood samples were analyzed for white blood cells (WBCs), CD34+ cells, and subpopulations CD34+/CD38− and CD34+/CD110+ without significant time delay in less than 24 hours with proper storage conditions at 4 degrees, by flow cytometry, and for SCF and CXCL12 gene expression by qRT-PCR. Apheresis products were also examined.
Results
After HIIT, the mean CD34+ cell count increased from 40.86±12.89 to 58.21±16.15 and white blood cell (WBC) count increased from 35.35±3.87 to 41.61±5.1, while the changes in the control group were small. HIIT training significantly increased the number of WBC, CD34+ cells and CD34+/CD110+ subset in peripheral blood with a significant effect size (p< 0.05) (d~1-1.4). However, this increase was not observed in apheresis yield. Also, no significant changes were observed in the expression of SCF and CXCL-12 genes after training and no significant correlation was observed between the expression of these genes and stem cell count.
Conclusions  
HIIT may serve as a transient, noninvasive adjunct to enhance HSC mobilization in peripheral blood following G-CSF administration. Nevertheless, its effects are temporary and do not augment apheresis yield, suggesting that the timing of exercise relative to apheresis is critical. The molecular mechanisms underlying HSC mobilization appear to operate independently of changes in SCF and CXCL12 expression.
 
Full-Text [PDF 873 kb]   (84 Downloads) |   |   Full-Text (HTML)  (5 Views)  
Type of Study: Research | Subject: Hematology

References
1. Shady KA, Shehata AM, Ebrahim AS. Impact of Acute Exercise by Yo-Yo Intermittent Recovery Test on Hematopoietic Stem Cells, Muscle Damage and Inflammations Markers in Football Players. The Scientific Journal of Physical Education and Sports Sciences 2020; 39(1): 1-14.
2. Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E, Gioia M, et al. Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. Am J Physiol Regul Integr Comp Physiol 2005; 289(5): R1496-R503. [DOI:10.1152/ajpregu.00338.2005] [PMID]
3. Baker JM, Nederveen JP, Parise G. Aerobic exercise in humans mobilizes HSCs in an intensity-dependent manner. J Appl Physiol(1985) 2017; 122(1): 182-90. [DOI:10.1152/japplphysiol.00696.2016] [PMID] []
4. Kasravi K, Ghazalian F, Gaeini A, Hajifathali A, Gholami M. A Comparison of the Effect of Two Types of Continuous and Discontinuous Aerobic Exercise on Patients' Stem Cell Mobilization before Autologous Hematopoietic Stem Cell Transplantation. Int J Hematol Oncol Stem Cell Res 2021; 15(1): 61-71. [DOI:10.18502/ijhoscr.v15i1.5250] [PMID] []
5. Kröpfl JM, Stelzer I, Mangge H, Pekovits K, Fuchs R, Allard N, et al. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity. PLoS One 2014; 9(9): e106120. [DOI:10.1371/journal.pone.0106120] [PMID] []
6. Kroepfl JM, Pekovits K, Stelzer I, Fuchs R, Zelzer S, Hofmann P, et al. Exercise increases the frequency of circulating hematopoietic progenitor cells, but reduces hematopoietic colony-forming capacity. Stem Cells Dev 2012; 21(16): 2915-25. [DOI:10.1089/scd.2012.0017] [PMID]
7. Zarekar T, Hajifathali A, Ahmadizad S. The effect of High Intensity Interval Exercise on Platelet Engraftment in Autologous Bone Marrow Transplantation (BMT). Int J Hematol Oncol Stem Cell Res 2024; 18(3): 240-8. [DOI:10.18502/ijhoscr.v18i3.16104] [PMID] []
8. Dias ALM, Laterza MC, Mira PAdC, Freitas IMG, Trevizan PF, Martinez DG, et al. Exacerbated hemodynamic response during exercise in cancer patients prior to autologous hematopoietic stem cell transplantation. Support Care Cancer 2021; 29(7): 3831-8. [DOI:10.1007/s00520-020-05911-1] [PMID]
9. Ji C, Dai R, Wu H, Li Q, Liu S, He P, et al. Efficacy and safety of hematopoietic stem cell transplantation for hematologic malignancies: A protocol for an overview of systematic reviews and meta-analyses. Medicine: Case Reports and Study Protocols 2021; 2(12): e0174. [DOI:10.1097/MD9.0000000000000174]
10. de Vasconcelos P, Lacerda JF. Hematopoietic Stem Cell Transplantation for Neurological Disorders: A Focus on Inborn Errors of Metabolism. Front Cell Neurosci 2022; 16: 895511. [DOI:10.3389/fncel.2022.895511] [PMID] []
11. Carreras E, Dufour C, Mohty M, Kröger N. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies [Internet]. 7th ed. Cham (CH): Springer; 2019. [DOI:10.1007/978-3-030-02278-5]
12. Zarekar T, Ahmadizad S, Hajifathali A. The effect of high intensity interval training on neutropenia in patients with lymphoma and multiple myeloma after hematopoietic stem cell transplantation. Sport Physiology 2023; 15(58): 101-24. [Article in Farsi]
13. Hedayati S, Rahimi A, Aghaei F, Mohsenzadeh M. Reviewing the effect of exercise on hematopoietic stem cell mobilization. J Iran Blood Transfus 2023; 20(2): 143-54. [Article in Farsi]
14. Niemiro GM, Parel J, Beals J, Van Vliet S, Paluska SA, Moore DR, et al. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol 2017; 122(3): 675-82. [DOI:10.1152/japplphysiol.00936.2016] [PMID]
15. Agha NH, Baker FL, Kunz HE, Graff R, Azadan R, Dolan C, et al. Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the β2-adrenergic receptor. Brain Behav Immun 2018; 68: 66-75. [DOI:10.1016/j.bbi.2017.10.001] [PMID] []
16. Boppart MD, De Lisio M, Witkowski S. Exercise and stem cells. Prog Mol Biol Transl Sci 2015; 135: 423-56. [DOI:10.1016/bs.pmbts.2015.07.005] [PMID]
17. Kröpfl JM, Beltrami FG, Gruber HJ, Stelzer I, Spengler CM. Exercise-induced circulating hematopoietic stem and progenitor cells in well-trained subjects. Front Physiol 2020; 11: 308. [DOI:10.3389/fphys.2020.00308] [PMID] []
18. Ghanimati R, Rajabi H, Ramezani F, Ramez M, Bapiran M, Nasirinezhad F. The effect of preconditioning with high-intensity training on tissue levels of G-CSF, its receptor and C-kit after an acute myocardial infarction in male rats. BMC Cardiovasc Disord 2020; 20(1): 75. [DOI:10.1186/s12872-020-01380-w] [PMID] []
19. Li W, Chen L, Sajadi SM, Baghaei S, Salahshour S. The impact of acute and chronic aerobic and resistance exercise on stem cell mobilization: A review of effects in healthy and diseased individuals across different age groups. Regen Ther 2024; 27: 464-81. [DOI:10.1016/j.reth.2024.04.013] [PMID] []
20. Heinemann NC, Tischer-Zimmermann S, Wittke TC, Eigendorf J, Kerling A, Framke T, et al. High-intensity interval training in allogeneic adoptive T-cell immunotherapy-a big HIT? J Transl Med 2020; 18(1): 148. [DOI:10.1186/s12967-020-02301-3] [PMID] []
21. Chang HH, Liou YS, Sun DS. Hematopoietic stem cell mobilization. Tzu Chi Med J 2022; 34(3): 270-5. [DOI:10.4103/tcmj.tcmj_98_21] [PMID] []
22. McKinnon KM. Flow cytometry: an overview. Curr Protoc Immunol 2018; 120: 5.1.1-5.1.11. [DOI:10.1002/cpim.40] [PMID] []
23. Grady DG, Cummings SR, Hulley SB. Alternative clinical trial designs and implementation issues. In: Grady DG, Cummings SR, Hulley SB, Browner WS, Newman ThB. Designing Clinical Research. 4th ed; 2013. p. 151-70.
24. do Lago ASD, Zaffarani C, Mendonça JFB, Moran CA, Costa D, Gomes ELdFD. Effects of physical exercise for children and adolescents undergoing hematopoietic stem cell transplantation: a systematic review and meta-analysis. Hematol Transfus Cell Ther 2021; 43(3): 313-23. [DOI:10.1016/j.htct.2020.07.013] [PMID] []
25. Chamorro-Viña C, Guilcher GM, Khan FM, Mazil K, Schulte F, Wurz A, et al. EXERCISE in pediatric autologous stem cell transplant patients: a randomized controlled trial protocol. BMC Cancer 2012; 12: 401. [DOI:10.1186/1471-2407-12-401] [PMID] []
26. Aziz JA, Smith C, Slobodian M, Du I, Shorr R, De Lisio M, et al. Impact of exercise training on hematological outcomes following hematopoietic cell transplantation: a scoping review. Clin Invest Med 2021; 44(2): E19-26. [DOI:10.25011/cim.v44i2.36369] [PMID]
27. Keser I, Suyani E, Aki SZ, Sucak AGT. The positive impact of regular exercise program on stem cell mobilization prior to autologous stem cell transplantation. Transfus Apher Sci 2013; 49(2): 302-6. [DOI:10.1016/j.transci.2013.06.007] [PMID]
28. Barrett A, Longhurst P, Sneath P, Watson J. Mobilization of CFU-C by exercise and ACTH induced stress in man. Exp Hematol 1978; 6(7): 590-4.
29. Bonsignore MR, Morici G, Santoro A, Pagano M, Cascio L, Bonanno A, et al. Circulating hematopoietic progenitor cells in runners. J Appl Physiol 2002; 93(5): 1691-7. [DOI:10.1152/japplphysiol.00376.2002] [PMID]
30. Van Craenenbroeck EM, Vrints CJ, Haine SE, Vermeulen K, Goovaerts I, Van Tendeloo VF, et al. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. J Appl Physiol 2008; 104(4): 1006-13. [DOI:10.1152/japplphysiol.01210.2007] [PMID]
31. Möbius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, et al. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 2009; 107(6): 1943-50. [DOI:10.1152/japplphysiol.00532.2009] [PMID]
32. Bonsignore MR, Morici G, Riccioni R, Huertas A, Petrucci E, Veca M, et al. Hemopoietic and angiogenetic progenitors in healthy athletes: different responses to endurance and maximal exercise. J Appl Physiol 2010; 109(1): 60-7. [DOI:10.1152/japplphysiol.01344.2009] [PMID]
33. Pradana F, Nijjar T, Cox PA, Morgan PT, Podlogar T, Lucas SJ, et al. Brief cycling intervals incrementally increase the number of hematopoietic stem and progenitor cells in human peripheral blood. Front Physiol 2024; 15: 1327269. [DOI:10.3389/fphys.2024.1327269] [PMID] []
34. Schmid M, Kroepfl JM, Spengler CM. Changes in circulating stem and progenitor cell numbers following acute exercise in healthy human subjects: a systematic review and meta-analysis. Stem Cell Rev Rep 2021; 17(4): 1091-1120. [DOI:10.1007/s12015-020-10105-7] [PMID] []
35. Emmons R, Niemiro GM, Owolabi O, De Lisio M. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome. J Appl Physiol 2016; 120(6): 624-32. [DOI:10.1152/japplphysiol.00925.2015] [PMID]
36. Nederveen JP, Baker J, Ibrahim G, Ivankovic V, Percival ME, Parise G. Hematopoietic stem and progenitor cell (HSPC) mobilization responses to different exercise intensities in young and older adults. Journal of Science in Sport and Exercise 2020; 2: 47-58. [DOI:10.1007/s42978-019-00050-4]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Journal of Iranian Blood Transfusion

Designed & Developed by: Yektaweb