Volume 12, Issue 4 (Winter 2016)                   Sci J Iran Blood Transfus Organ 2016, 12(4): 318-330 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani F, Amiri F, Mohammadipour M, Jalili M, Habibi Roudkenar M, Jalili M. Cell survival evaluation of mesenchaymal stem cells cultivated in the presense of secretome of HIF-1α/Nrf2-engineered-MSC. Sci J Iran Blood Transfus Organ 2016; 12 (4) :318-330
URL: http://bloodjournal.ir/article-1-902-en.html
Full-Text [PDF 524 kb]   (1726 Downloads)     |   Abstract (HTML)  (6240 Views)
Full-Text:   (1751 Views)
    References :  
  1. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation 1974; 17(4): 331-40.
  2. Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovas Res 2005; 66(3): 543-51.
  3. Li X, Zhang Y, Qi G. Evaluation of isolation methods and      culture    conditions     for    rat    bone   marrow
 
 
 
 
 
mesenchymal stem cells. Cytotechnology 2013; 65(3): 323-34.
  1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining  multipotent  mesenchymal  stromal cells. The
International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  1. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98(8): 2396-402.
  2. Aggarwal S, Pittenger MF. Human mesenchymal stem
cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
  1. Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 2006; 81(10): 1390-7.
  2. Rüster B, Göttig S, Ludwig RJ, Bistrian R, Müller S, Seifried E, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 2006; 108(12): 3938-44.
  3. Devine SM, Cobbs C, Jennings M, Bartholomew A,
Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003; 101(8): 2999-3001.
  1. Lee KA, Shim W, Paik MJ, Lee SC, Shin JY, Ahn YH, et al. Analysis of changes in the viability and gene expression profiles of human mesenchymal stromal cells over time. Cytotherapy 2009; 11(6): 688-97.
  2. Wang JA, Chen TL, Jiang J, Shi H, Gui C, Luo RH, et al. Hypoxic preconditioning attenuates hypoxia/reoxygenation-induced apoptosis in mesenchymal stem cells. Acta Pharmacol Sin 2008; 29(1): 74-82.
  3. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 2008; 45(4): 567-81.
  4. Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thor Cardiovas Surg 2008; 135(4): 799-808.
  5. Lu H, Li Y, Sheng Z, WANG Y. Preconditioning of stem cells for the treatment of myocardial infarction. Chinese Med J 2012; 125(2): 378-84.
  6. Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 2007; 25(8): 2118-27.
  7. Vanella L, Sodhi K, Kim DH, Puri N, Maheshwari M, Hinds TD, et al. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Gene expre 2013; 51(6): 35-41.
  8. Kiani AK, Kazemi A, Halabian R, Mohammadipour M, Jahanian-Najafabadi A,  Roudkenar MH. HIF-1a confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch Med Res 2013; 44(3): 185-93.
  9. Mohammadzadeh M, Halabian R, Gharehbaghian A, Amirizadeh N, Jahanian-Najafabadi A, Roushandeh AM, et al. Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and
    cytotoxicity. Cell Stress Chaperones 2012; 17(5): 553-65.
  10. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007; 47: 89-116.
  11. Adams J, Difazio L, Rolandelli R, Lujan J,  Haskó G, Csoka B, et al. HIF-1: a key mediator in hypoxia. Acta Physiol Hung 2009; 96(1): 19-28.
  12. Kilroy EG, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 2007; 212(3): 702-7.
  13. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 2010; 5(2): 103-10.
  14. Amiri F, Halabian R, Salimian M, Shokrgozar MA, Soleimani M, Jahanian-Najafabadi A, et al. Induction of multipotency in umbilical cord-derived mesenchymal stem cells cultivated under suspension conditions. Cell Stress Chaperones 2014; 19(5): 657-66.
  15. Phillips AJ. The challenge of gene therapy and DNA delivery. J Pharm Pharmacol 2001; 53(9): 1169-74.
  16. Hoelters J, Ciccarella M, Drechsel M, Geissler C, Gülkan H, Böcker W, et al. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med 2005; 7(6): 718-28.
  17. Venugopal P, Balasubramanian S, Majumdar AS, Ta M. Isolation, characterization, and gene expression analysis of Wharton’s jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning 2011; 4: 39-50.
  18. Kwang M K, Sang BL, Lee SH, Yong KL, Kyoung NK.  Comparison of validity between WST-1 and MTT test in bioceramic materials. Key Eng Mats 2005; 284-286: 585-8.
  19. Li H, Zuo S, He Z, Yang Y, Pasha Z, Wang Y, et al. Paracrine factors released by GATA-4 overexpressed mesenchymal stem cells increase angiogenesis and cell survival. Am J Physiol Heart Circ Physiol 2010; 299(6): 1772-81.
  20. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20(6): 661-9.
  21. Xiang MX, He AN, Wang JA, Gui C. Protective paracrine effect of mesenchymal stem cells on cardiomyocytes. J Zhejiang Univ Sci B 2009; 10(8): 619-24.
 
 
 
 
 
 
 
 


 
Original  Article
 

 
 
 
Sci J Iran Blood Transfus Organ 2016; 12(4): 318-330
 
Cell survival evaluation of mesenchaymal stem cells
cultivated in the presense of secretome of
HIF-1α/Nrf2-engineered-MSC
 
Soltani F.1, Amiri F.1, Kheirandish M.1, Mohammadipour M.1, Jalili M.2,
Habibi Roudkenar M.1, Jalili M.A.1
 
 
1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine,Tehran, Iran
1Karaj Branch of Islmaic Azad University, Karaj, Iran
 
 
Abstract
Background and Objectives
Mesenchymal Stem Cells (MSCs) are the ideal cell source for transplantation. But different stresses during MSCs in vitro expansion lead to decreased survival rate after transplantation. Therefore, applying practical strategies to enhance their viability in stressful microenvironment is quite necessary. This study aimed to survey effects of HIF-1α-Nrf2-engineered-MSCs secretome on MSCs survival under different stress conditions.  
 
Materials and Methods
Recombinant pcDNA3.1-Nrf2 and pcDNA3.1-HIF-1α were transfected and co-transfected into umbilical cord MSCs (UC-MSCs) using FUGENE HD transfection reagent. After 72 hrs, expression of Nrf2 and HIF-1α were verified by RT-PCR. Different cell groups were exposed to hypoxic, serum deprived and oxidative stress conditions. The HIF-1α-Nrf2-engineered-MSCs secretome was harvested and concentrated. Then, UC-MSCs were cultured in presence of this secretome and their viability was assayed using trypan blue exclusion dye and WST-1   flowing by induction of the same stress conditions.
Results
HIF-1α-Nrf2-engineered-MSCs expressed Nrf2 and HIF-1α. HIF-1α-Nrf2-engineered-MSCs indicated a higher survival rate (84.5 ± 5.5%) compared with the control group (55.3 ± 4%). Moreover, the survival rate of UC-MSCs cultured with HIF-1α-Nrf2-engineered-MSCs secretome was 81.6 ± 6% and it was 57.9 ± 4.3% for the control group under the same stress conditions.
 
Conclusions
HIF-1α-Nrf2-engineered-MSCs secretome protects MSCs against oxidative, serum deprived and hypoxic stress conditions.
 
Key words: Conditioned Medium, Mesenchymal Stem Cells, Cell Survival
 
 
 
Received:  28 Sep 2014
Accepted: 23 Jun 2015
 
 
 

Correspondence: Jalili MA., PhD of Medicinal Chemistry. Assistant Professor of Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine.
P.O.Box: 14665-1157, Tehran, Iran. Tel: (+9821) 82052155; Fax: (+9821) 88601599
E-mail: m.jalili@ibto.ir
Type of Study: Research | Subject: Stem cells
Published: 2016/01/4

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Scientific Journal of Iran Blood Transfus Organ

Designed & Developed by : Yektaweb