Volume 11, Issue 2 (Summer 2014)                   Sci J Iran Blood Transfus Organ 2014, 11(2): 137-146 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kamali Dolatabadi E, Ostadali Dehaghi M, Amirizadeh N, Parivar K, Mahdian R. Frequency of P15 /INK4B CpG island methylation in AML patients. Sci J Iran Blood Transfus Organ 2014; 11 (2) :137-146
URL: http://bloodjournal.ir/article-1-762-en.html
Full-Text [PDF 401 kb]   (2240 Downloads)     |   Abstract (HTML)  (9096 Views)
Full-Text:   (1587 Views)
References:
 
  1. Vardiman JW. The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem Biol Interact 2010; 184(1-2): 16-20.
  2. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92(7): 2322-33.
  3. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;  33 Suppl: 245-54.
  4. Ehrlich M, Woods CB, Yu MC, Dubeau L, Yang F, Campan M, et al. Quantitative analysis  of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 2006; 25(18):  2636-45.
  5. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37(4): 391-400.
  6. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983; 11(19): 6883-94.
  7. Jost JP, Oakeley EJ, Zhu B, Benjamin D, Thiry S, Siegmann M, et al. 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res 2001; 29(21): 4452-61.
  8. Seedhouse CH, Das-Gupta EP, Russell NH. Methylation of the hMLH1 promoter and its association with microsatellite instability in acute myeloid leukemia. Leukemia 2003; 17(1): 83-8.
  9. Oki Y, Issa JP. Epigenetic mechanisms in AML - a target for therapy. Cancer Treat Res 2010; 145: 19-40.
  10. Galm O, Wilop S, Luders C, Jost E, Gehbauer G, Herman JG, et al. Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol 2005; 84 Suppl 1: 39-46.
  11. Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O'Keefe C, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 2009; 113(6): 1315-25.
  12. Ekmekci CG1, Gutiérrez MI, Siraj AK, Ozbek U, Bhatia K. Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia. Am J Hematol 2004; 77(3): 233-40.
  13. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349(21): 2042-54.
  14. Alvarez S, Suela J, Valencia A, Fernandez A, Wunderlich M, Agirre X, et al. DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PloS One 2010; 5(8): e12197.
  15. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61(8): 3225-9.
  16. Kuipers JE, Coenen EA, Balgobind BV, Stary J, Baruchel A, de Haas V, et al. High IGSF4 expression in pediatric  M5    acute   myeloid       leukemia      with
t(9;11)(p22;q23). Blood 2011; 117(3): 928-35.
  1. Rodrigues EF, Santos-Reboucas CB, Goncalves Pimentel MM, Mencalha AL, Dobbin J, Da Costa ES, et al. Epigenetic alterations of P15(INK4B) and p16(INK4A) genes in pediatric primary myelodysplastic syndrome. Leuk Lymphoma 2010; 51(10): 1887-94.
  2. Cao J, Zhou J, Gao Y, Gu L, Meng H, Liu H, et al. Methylation of p16 CpG island associated with malignant progression of oral epithelial dysplasia: a prospective cohort study. Clin Cancer Res 2009; 15(16): 5178-83.
  3. Kawaguchi K, Oda Y, Saito T, Yamamoto H, Tamiya S, Takahira T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis. J Pathol 2003; 201(3): 487-95.
  4. Oda Y, Yamamoto H, Takahira T, Kobayashi C, Kawaguchi K, Tateishi N, et al. Frequent alteration of p16(INK4a)/p14(ARF) and p53 pathways in the round cell component of myxoid/round cell liposarcoma: p53 gene alterations and reduced p14(ARF) expression both correlate with poor prognosis. J Pathol 2005; 207(4): 410-21.
  5. Perrone F, Tamborini E, Dagrada GP, Colombo F, Bonadiman L, Albertini V, et al.  9p21 locus analysis in high-risk gastrointestinal stromal tumors characterized for c-kit and platelet-derived growth factor receptor alpha gene alterations. Cancer 2005; 104(1): 159-69.
  6. Fares J, Koller R, Humeniuk R, Wolff L, Bies J. The tumor suppressor P15Ink4b regulates the differentiation and maturation of conventional dendritic cells. Blood 2012; 119(21): 5005-15.
  7. Hannon GJ, Beach D. P15INK4B is a potential effector
of TGF-beta-induced cell cycle arrest. Nature 1994; 371(6494): 257-61.
  1. Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J, et al. P15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 2007; 448(7156): 943-6.
  2. Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J, et al. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 2000; 19(13): 3496-506.
  3. Drexler HG. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes P15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 1998; 12(6): 845-59.
  4. R Remáková M1, Škoda M, Faustová M, Vencovský J, Novota P. Validation of RNA extraction procedures focused on micro RNA expression analysis. Folia Biol (Praha) 2013; 59(1): 47-50.
  5. Eikmans M, Rekers NV, Anholts JD, Heidt S, Claas FH. Blood cell mRNAs and microRNAs: optimized protocols for extraction and preservation. Blood 2013; 121(11): e81-9.
  6. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141-96.
  7. Blum  W, Marcucci G. Targeting epigenetic changes in
acute myeloid leukemia. Clin Adv Hematol Oncol 2005; 3(11): 855-65, 882.
  1. Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998; 1378(2): F115-77.
  2. Wong IH, Ng MH, Huang DP, Lee JC. Aberrant P15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood 2000; 95(6): 1942-9.
  3. El-Shakankiry NH, Mossallam GI. P15 (INK4B) and E-cadherin CpG island methylation is frequent in Egyptian acute myeloid leukemia. J Egypt Natl Canc Inst 2006; 18(3): 227-32.
  4. Guo SX, Taki T, Ohnishi H, Piao HY, Tabuchi K, Bessho F, et al. Hypermethylation of p16 and P15 genes and RB protein expression in acute leukemia. Leuk Res2000; 24(1): 39-46.
  5. Shimamoto T, Ohyashiki JH, Ohyashiki K. Methylation of P15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res 2005; 29(6): 653-9.
  6. Aggerholm A, Guldberg P, Hokland M, Hokland P. Extensive intra- and interindividual heterogeneity of P15INK4B methylation in acute myeloid leukemia. Cancer Res 1999; 59(2): 436-41.
  7. Chen H, Wu S. Hypermethylation of the P15(INK4B) gene in acute leukemia and myelodysplastic syndromes. Chin Med J (Engl) 2002; 115(7): 987-90.
  8. Chim CS, Liang R, Tam CY, Kwong YL. Methylation of P15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol 2001; 19(7): 2033-40.
  9. Chim CS, Wong AS, Kwong YL. Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias. Ann Hematol 2003; 82(12): 738-42.
  10. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Methylation of P15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003; 17(9): 1813-9.
  11. Das-Gupta EP, Russell NH. Anticorresponding P15 promoter methylation and microsatellite instability in acute myeloblastic leukemia. Blood. 2000; 96(5): 2002.
  12. Toyota M, Ahuja N, Suzuki H, Itoh F, Ohe-Toyota M, Imai K, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res 1999; 59(21): 5438-42.
  13. Kim M, Oh B, Kim SY, Park HK, Hwang SM, Kim TY, et al. P15INK4b methylation correlates with thrombocytopenia, blast percentage, and survival in myelodysplastic syndromes in a dose dependent manner: quantitation using pyrosequencing study. Leuk Res 2010; 34(6): 718-22.
  14. Preisler HD, Li B, Chen H, Fisher L, Nayini J, Raza A, et al. P15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia 2001; 15(10): 1589-95.
  15. Sakashita K, Koike K, Kinoshita T, Shiohara M, Kamijo T, Taniguchi S, et al. Dynamic DNA methylation change in the CpG island region of P15 during   human   myeloid    development.  J Clin Invest
2001; 108(8): 1195-204.
  1. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z,
    Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6(12): e1001233.
  2. Popov N, Gil J. Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics 2010; 5(8): 685-90.
  3. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al. Epigenetic silencing of tumour suppressor gene P15 by its antisense RNA. Nature 2008; 451(7175): 202-6.
  4. Basu S, Liu Q, Qiu Y, Dong F. Gfi-1 represses CDKN2B encoding P15INK4B through interaction with Miz-1. Proc Natl Acad Sci U S A 2009; 106(5): 1433-8.
  5. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor P15INK4b. Nat Cell Biol 2001; 3(4): 400-8.
  6. Kristensen LS, Hansen LL. PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin  Chem 2009; 55(8): 1471-83.
  7. Li Y, Tollefsbol TO. Combined chromatin immunoprecipitation and bisulfite methylation sequencing analysis. Methods Mol Biol 2011; 791: 239-51.
  8. Geyer CR. Strategies to re-express epigenetically silenced P15(INK4b) and p21(WAF1) genes in acute myeloid leukemia. Epigenetics 2010; 5(8): 696-703.
 
 
 



 
 
 
 
Sci J Iran Blood Transfus Organ 2014; 11(2): 137-146
 
Original Article
 
 

Frequency of P15 /INK4B CpG island methylation
in AML patients
 
Kamali Dolatabadi E.1, Ostadali Dehaghi M.R.2, Amirizadeh N.3, Parivar K.1,
Mahdian R.4
 
 
1Science and Research Branch Tehran Islamic Azad University, Tehran, Iran
2Shariati Hospital, Hematology Oncology and Stem cell Transplantation Research Center, Tehran, Iran
3Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
4Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
 
 
Abstract
Background and Objectives
One of the common epigenetic pathways in all types of human haematopoeitic neoplasms is the hypermethylation promoter of tumor suppressor genes. It is usually associated with inactivation of the involved genes, and can be reversed using demethylating agents. The aim of this study was to evaluate the frequency of P15 promoter methylation in Iranian acute myeloid leukemia (AML) patients. Furthermore, this study examined the correlation between P15 promoter methylation and P15 expression.
 
Materials and Methods
P15 promoter methylation has been investigated  in 59 acute myeloid leukemia (AML) patients by melting curve analysis. P15 mRNA expression has been analyzed using real-time PCR technique (∆∆CT computational) to investigate the correlation between P15 expression and P15 promoter methylation.
 
Results
The aberrant methylation of the P15 promoter was detected in 40.7% of all patients. Regardless of the methylation pattern, 92.9% of all patients showed a decrease in expression of P15. Out of the total number of patients, 90.9% who showed methylation of P15 gene (22 of 24) and 88.5% (31 of 35) who did not, both illustrated  reduction in P15 expression level.
 
Conclusions 
Despite the methylation of P15 at a low expression level in most of the patients, no significant difference between methylated and unmethylated groups was observed.
 
Key words: Epigenetics, Acute Myeloid Leukemia, Methylation
 
 
 
 
 
 
Received: 13 Jul  2013
Accepted:  8 Dec 2013
 
 

Correspondence: Kamali Dolatabadi E., PhD Student of Molecular and Cellular Biology. Science and Research Branch ofIslamic Azad University.
P.O.Box: 14114, Tehran, Iran. Tel: (+9821) 84902626; Fax : (+9821) 88004140
E-mail:
smat_kamali@yahoo.com
Type of Study: Research | Subject: Hematology
Published: 2014/06/22

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Scientific Journal of Iran Blood Transfus Organ

Designed & Developed by : Yektaweb