Volume 21, Issue 2 (Summer 2024)                   Sci J Iran Blood Transfus Organ 2024, 21(2): 169-184 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi Neysiyani S, Amini Kafi-Abad S. The effect of different types of plateletpheresis devices on the quality parameters of the produced platelet units. Sci J Iran Blood Transfus Organ 2024; 21 (2) :169-184
URL: http://bloodjournal.ir/article-1-1525-en.html
Full-Text [PDF 665 kb]   (292 Downloads)     |   Abstract (HTML)  (1257 Views)
Full-Text:   (405 Views)
References:
  1. Gremmel T, Frelinger AL 3rd, Michelson AD. Platelet Physiology. Semin Thromb Hemost 2016; 42(3): 191-204. 
  2. Jenne C, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol 2013; 35(3): 254-61.
  3. Frojmovic MM, Panjwani R. Geometry of normal mammalian platelets by quantitative microscopic studies. Biophys J 1976; 16(9): 1071-89.
  4. Holinstat M. Normal platelet function. Cancer Metastasis Rev 2017; 36(2): 195-8.
  5. Ghezelbash B, Amini Kafi-abad S, Hojjati MT, Hamidpoor M, Vaeli S, Tabtabae MR, et al. In vitro assessment of platelet lesions during 5-day storage in Iranian Blood Transfusion Organization (IBTO) centers. Arch Iran Med 2015; 18(2): 114-6.
  6. Javadzadeh Shahshahani H, Akhavan Tafti F, Amini Kafi‐abad S. An overview of three methods used to prepare the platelet components from whole blood and apheresis method. Sci J Iran Blood Transfus Organ 2023; 20(3): 236-54. [Article in Farsi]
  7. Nayak R. Manual of transfusion medicine. 1st ed. Philadelphia: Jaypee Brothers Medical Publishers; 2020. p. 254-81.
  8. AABB Press. Apheresis: Principles and Practice. 3rd  ed. USA: American Association of Blood Banks (AABB); 2010. p. 71-95.
  9. American Association of Blood Banks (AABB). Technical Manual. 20th ed; 2020. p. 509-22.
  10. Yankee RA, Grumet FC, Rogentine GN. Platelet transfusion therapy; the selection of compatible platelet donors for refractory patients by lymphocyte HL-A typing. N Engl J Med 1969; 281(22): 1208-12.
  11. Chaudhary R, Das SS, Khetan D, Sinha P. Effect of donor variables on yield in single donor plateletpheresis by continuous flow cell separator. Transfus Apher Sci 2006; 34(2): 157-61.
  12. Sweeney JD, Holme S, Heaton A. Quality of platelet concentrates. Immunol Invest 1995; 24(1-2): 353-70.
  13. Jang CS, Kim SI, Kim HK, Kweon CO, Kim BW, Kim DC, et al. Plateletpheresis: the process, devices, and indicators of product quality. Journal of Life Sciences 2014; 24(9): 1030-8. [Article in Chinese]
  14. Gniadek T. Production of components by apheresis. In: McCullough Th. Transfusion Medicine; 2021. p. 90-110.
  15. Ringwald J, Zingsem J, Zimmermann R, Strasser E, Antoon M, Eckstein R. First comparison of productivity and citrate donor load between the Trima® version 4 (dual‐stage filler) and the Trima Accel®(single‐stage filler) in the same donors. Vox Sang 2003; 85(4): 267-75.
  16. Simon TL. The collection of platelets by apheresis procedures. Transfus Med Rev 1994; 8(2): 132-45.
  17. Burgstaler EA. Blood component collection by apheresis. J Clin Apher 2006; 21(2): 142-51.
  18.            Keklik M, Eser B, Kaynar L, Sivgin S, Keklik E, Solmaz M, et al. Comparison of plateletpheresis on the Fenwal Amicus, Fresenius COM. TEC, and trima accel cell separators. J Clin Apher 2015; 30(3): 171-5.
  19. Procházková R, Andrýs C, Hubáčková L, Krejsek J. Markers of platelet activation and apoptosis in platelet concentrates collected by apheresis. Transfus Apher Sci 2007; 37(2): 115-23.
  20. Tynngård N, Lindahl TL, Trinks M, Studer M, Berlin G. The quality of platelet concentrates produced by COBE Spectra and Trima Accel cell separators during storage for 7 days as assessed by in vitro methods. Transfusion 2008; 48(4): 715-22.
  21. Guide to the preparation, use and quality assurance of blood components. 20 ed: European Directorate for the Quality ofMedicines & HealthCare of the Council of Europe (EDQM); 2020. p. 223-47.
  22. Cavagnetto C, Alejo Blanco R, McKenna H, Willmott L, Aydogdu E, Akinyemi N, et al. Residual red cells in blood components: A multisite study of fully automated enumeration using a hematology analyzer. Transfusion 2021; 61(2): 568-78.
  23. Moog R, Muller N, Goergens D. Platelet collection with the Amicus and the AS. TEC 204 blood cell separators. Transfusion 1998; 38(3): 285-9.
  24. Burgstaler EA, Pineda AA, Bryant SC. Prospective comparison of plateletapheresis using four apheresis systems on the same donors. J Clin Apher 1999; 14(4): 163-70.
  25. Moog R, Müller N. White cell reduction during plateletpheresis: a comparison of three blood cell separators. Transfusion 1999; 39(6): 572-7.
  26. Arcot PJ, Kumar K, Coshic P, Andriyas V, Mehta V. A comparative study of five plateletpheresis machines in a tertiary care center of India: AmiCORE vs COM. TEC vs Haemonetics MCS+ vs Spectra Optia vs Trima Accel. J Clin Apher 2021; 36(1): 41-7.
  27. Jilma‐Stohlawetz P, Eichelberger B, Horvath M, Jilma B, Panzer S. In vitro platelet function of platelet concentrates prepared using three different apheresis devices determined by impedance and optical aggregometry. Transfusion 2009; 49(8): 1564-8.
  28. Macher S, Sipurzynski‐Budrass S, Rosskopf K, Rohde E, Griesbacher A, Groselj‐Strele A, et al. Function and activation state of platelets in vitro depend on apheresis modality. Vox Sang 2010; 99(4): 332-40.
  29. Hamid A. The study of platelet activation in platelet concentrates prepared by four types of apheresis machines. Biohealth Science Bulletin 2010; 2(1): 1-4.
  30. Flesch BK, Adamzik I, Steppat D, Miller J, Carstensen L, Schapke M, et al. Paired crossover study of two plateletpheresis systems concerning platelet product quality and donor comfort. Transfusion 2010; 50(4): 894-901.
  31. Philip J, Biswas AK, Chatterjee T, Mallhi RS. Comparative analysis of various aspects of plateletpheresis on the fenwal amicus and fresenius COM. TEC cell separator instruments. Lab Med 2014; 45(4): 315-23.
  32. Tendulkar A, Rajadhyaksha SB. Comparison of plateletpheresis on three continuous flow cell separators. Asian J Transfus Sci 2009; 3(2): 73.
  33. Baruah S, Bajpai M. Comparative assessment of single-donor plateletpheresis by Haemonetics® MCS® plus and Trima Accel®. Asian J Transfus Sci 2020; 14(1): 23.
  34. Wang HH, Liao LN, Lin CL, Yen LL, Hsiao YM, Ko JL. Quality validation of platelets obtained from the Haemonetics and Trima Accel automated blood-collection systems. Transfus Clin Biol 2021; 28(1): 44-50.
  35. Das SS, Sen S, Zaman R, Biswas RN. Plateletpheresis in the era of automation: Optimizing donor safety and product quality using modern apheresis instruments. Indian J Hematol Blood Transfus 2021; 37: 134-9.
  36. Keklik M, Keklik E, Kalan U, Ozer O, Arik F, Sarikoc M. Comparison of plateletpheresis on the haemonetics and trima accel cell separators. Ther Apher Dial 2018; 22(1): 87-90.
  37. Heba N, Noha B. Platelet pheresis: A comparative study between Haemonetics MCS plus and Spectra Trima. Thromb Haemost Res 2019; 3(1): 1020.
  38. Simon TL, McCullough J, Snyder EL, Solheim BG, Strauss RG. Rossi's principles of transfusion medicine. Philadelphia: Wiley Online Library; 2022. p. 171-387.
  39. Black A, Orsó E, Kelsch R, Pereira M, Kamhieh‐Milz J, Salama A, et al. Analysis of platelet‐derived extracellular vesicles in plateletpheresis concentrates: a multicenter study. Transfusion 2017; 57(6): 1459-69.
  40. Baruah S, Bajpai M. Comparative assessment of single-donor plateletpheresis by Haemonetics(®) MCS(®) plus and Trima Accel(®). Asian J Transfus Sci 2020; 14(1): 23-7.
  41. Saadia A, Naeem T, Alvi SJ-u-D, Ali M, Butt TA. Comparison of Haemonetics MCS Plus and Baxter CS 3000 Plus for Platelet Apheresis: Experience at a Tertiary Care Hospital. BioMedica 2020; 36(1): 43-7.
  42. Khan ZR, Imran A. Plateletpheresis: A comparison between two blood cell separators at a tertiary care facility. The Professional Medical Journal 2023; 30(09): 1137-41.
  43. Murphy S, Gardner FH. Platelet storage at 22 degrees C; metabolic, morphologic, and functional studies. J Clin Invest 1971; 50(2): 370-7.
  44. Tudisco C, Jett BW, Byrne K, Oblitas J, Leitman SF, Stroncek DF. The value of pH as a quality control indicator for apheresis platelets. Transfusion 2005; 45(5): 773-8.
  45. Schooneman F, Claise C. The storage quality of apheresis platelets--analysis of results from seven different cell separators. Transfus Sci 1996; 17(4): 559-74.
  46. Picker SM, Radojska SM, Gathof BS. A prospective crossover trial comparing performance and in vitro platelet quality of three new apheresis devices with current equipment. Transfus Med Hemother 2006; 33(6): 520-7.
  47. Diedrich B, Sandgren P, Jansson B, Gulliksson H, Svensson L, Shanwell A. In vitro and in vivo effects of potassium and magnesium on storage up to 7 days of apheresis platelet concentrates in platelet additive solution. Vox Sang 2008; 94(2): 96-102.
  48. Johnson L, Winter KM, Hartkopf-Theis T, Reid S, Kwok M, Marks DC. Evaluation of the automated collection and extended storage of apheresis platelets in additive solution. Transfusion 2012; 52(3): 503-9.
  49. Slichter SJ, Bolgiano D, Jones MK, Christoffel T, Corson J, Rose L, et al. Viability and function of 8 - day - stored   apheresis   platelets.  Transfusion   2006  ; 46(10): 1763-9.
  50. Ranganathan S. Comparison of plateletpheresis on the Fresenius AS. TEC 204 and Haemonetics MCS 3p. J Clin Apher 2007; 22(1): 1-4.
  51. Chaudhary R, Sekhar Das S, Agarwal P, Shanker Shukla J. Quality systems in automated plateletpheresis in hospital‐based blood transfusion service in north India. J Clin Apher 2005; 20(2): 81-5.
  52. Ravi S, Chacko B, Sawada H, Kramer PA, Johnson MS, Benavides GA, et al. Metabolic plasticity in resting and thrombin activated platelets. PLoS One 2015; 10(4): e0123597.
  53. Tynngård N. Preparation, storage and quality control of platelet concentrates. Transfus Apher Sci 2009; 41(2): 97-104.
  54. Harrison P. Platelet function analysis. Blood Rev 2005; 19(2): 111-23.
  55. Hagberg I, Akkøk C, Lyberg T, Kjeldsen‐Kragh J. Apheresis‐induced platelet activation: comparison of three types of cell separators. Transfusion 2000; 40(2): 182-92.
  56. Thomas KA, Srinivasan AJ, McIntosh C, Rahn K, Kelly S, McGough L, et al. Comparison of platelet quality and function across apheresis collection platforms. Transfusion 2023; 63 Suppl 3: S146-158.
  57. Loudová M, Krejsek J, Kopecký O, Malý J. Cytoimunofluorometry and its use in the detection of blood platelet activation. Vnitr Lek 2001; 47(3): 175-80. [Article in Czech]
  58. Holme S, Sweeney JD, Sawyer S, Elfath MD. The expression of p-selectin during collection, processing, and storage of platelet concentrates: relationship to loss of in vivo viability. Transfusion 1997; 37(1): 12-7.
  59. Lai M, Rumi C, D’Onofrio G, Puggioni P, Menichella G, Candido A, et al. Phosphatidylserine exposure in platelet concentrates during the storage period: differences between the platelets collected with different cell separators. Transfus Apher Sci 2002; 27(3): 239-45.
  60. Millar D, Hayes C, Jones J, Klapper E, Kniep JN, Luu HS, et al. Comparison of the platelet activation status of single‐donor platelets obtained with two different cell separator technologies. Transfusion 2020; 60(9): 2067-78.
  61. Li M, Zhao Y, Chen X, Du X, Luo Y, Li Y, et al. Comparative analysis of the quality of platelet concentrates produced by apheresis procedures, platelet rich plasma, and buffy coat. Transfusion 2024; 64(2): 367-79.
  62. Picker SM, Radojska SM, Gathof BS. Evaluation of concurrent collection of in-line filtered platelets and packed red blood cells by multicomponent apheresis with three last-generation apparatuses. Vox Sang 2006; 91(1): 47-55.
  63. Stohlawetz P, Hergovich N, Stiegler G, Eichler HG, Höcker P, Kapiotis S, et al. Differential induction of P-selectin expression on platelets by two cell separators during plateletpheresis and the effect of gender on the release of soluble P-selectin. Transfusion 1998; 38(1): 24-30.
  64. Krailadsiri P, Seghatchian J. Are all leucodepleted platelet concentrates equivalent? Comparison of Cobe LRS Turbo, Haemonetics MCS+ LD, and filtered pooled buffy-coat-derived platelets. Vox Sang 2000; 78(3): 171-5.
  65. Perseghin P, Mascaretti L, Speranza T, Belotti D, Baldini V, Dassi M, et al. Platelet activation during plasma-reduced multicomponent PLT collection: a comparison between COBE Trima and Spectra LRS turbo cell separators. Transfusion 2004; 44(1): 125-30.
  66. Dijkstra-Tiekstra MJ, Pietersz RN, Huijgens PC. Correlation between the extent of platelet activation in platelet concentrates and in vitro and in vivo parameters. Vox Sang 2004; 87(4): 257-63.
  67. Choi WS, Jeon OH, Kim DS. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost 2010; 8(6): 1364-71.
  68. Danese S, Katz JA, Saibeni S, Papa A, Gasbarrini A, Vecchi M, et al. Activated platelets are the source of elevated levels of soluble CD40 ligand in the circulation of inflammatory bowel disease patients. Gut 2003; 52(10): 1435-41.
  69. Wenzel F, Günther W, Baertl A, Gruber W, Sorg RV, Haas R, et al. Platelet transfusion alters CD40L blood level and release capacity in patients suffering from thrombocytopenia. Transfusion 2012; 52(6): 1213-20.
  70. Kaufman J, Spinelli SL, Schultz E, Blumberg N, Phipps RP. Release of biologically active CD154 during collection and storage of platelet concentrates prepared for transfusion. J Thromb Haemost 2007; 5(4): 788-96.
  71. Skripchenko A, Kurtz J, Moroff G, Wagner SJ. Platelet products prepared by different methods of sedimentation undergo platelet activation differently during storage. Transfusion 2008; 48(7): 1469-77.
  72. Kiraly T, Bernier S, Kakaiya RM, Cable RG. Effect of methods of platelet resuspension on stored platelets. Ann Clin Lab Sci 1984; 14(5): 366-70.
  73. Evangelista V, Manarini S, Rotondo S, Martelli N, Polischuk R, McGregor JL, et al. Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the beta 2 integrin CD11b/CD18. Blood 1996; 88(11): 4183-94.
  74. Rinder HM, Murphy M, Mitchell JG, Stocks J, Ault
    KA, Hillman RS. Progressive platelet activation with storage: evidence for shortened survival of activated platelets after transfusion. Transfusion 1991; 31(5): 409-14.
  75. Rigotti A, Acton SL, Krieger M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem 1995; 270(27): 16221-4.
  76. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64(3): 676-705.
  77. Roshanzamir F, Amini-Kafiabad S, Zarif MN, Arabkhazaeli A, Mohammadipour M. The potential effect of leukocyte filtration methods on erythrocyte-derived microvesicles: One step forward. Eur J Transl Myol 2022; 32(3): 10708.
  78. Esmaeili MA, Yari F, Amini A, Rezvani MR. The effect of cell derived microparticles in transfusion medicine and adaptive immune system. Arch Med Lab Sci 2016; 2(1): 29-35.
  79. Rank A, Nieuwland R, Liebhardt S, Iberer M, Grützner S, Toth B, et al. Apheresis platelet concentrates contain platelet-derived and endothelial cell-derived microparticles. Vox Sang 2011; 100(2): 179-86.
  80. Black A, Pienimaeki-Roemer A, Kenyon O, Orsó E, Schmitz G. Platelet-derived extracellular vesicles in plateletpheresis concentrates as a quality control approach. Transfusion 2015; 55(9): 2184-96.
  81. Leidl K, Liebisch G, Richter D, Schmitz G. Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta 2008; 1781(10): 655-64.
  82. Leung SL, Dimasi A, Heiser S, Dunn A, Bluestein D, Slepian M. Modulation of platelet membrane function via exogenous lipid moiety exposure alters platelet responsiveness to shear. Annu Int Conf IEEE Eng Med Biol Soc 2015; 2015: 266-9.
  83. Noulsri E, Udomwinijsilp P, Lerdwana S, Chongkolwatana V, Permpikul P. Differences in levels of platelet-derived microparticles in platelet components prepared using the platelet rich plasma, buffy coat, and apheresis procedures. Transfus Apher Sci 2017; 56(2): 135-40.



 







Sci J Iran Blood Transfus Organ 2024; 21 (2): 169-184
Review Article
 
 The effect of different types of plateletpheresis devices

on the quality parameters of the produced platelet units

Sadeghi Neysiyani S.1, Amini-Kafiabad S.1

1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran


Abstract
Background and Objectives
Plateletpheresis is the collection of platelets from a donor using an apheresis device. There are different types of apheresis devices used for plateletpheresis, and each device can have an impact on the quality of platelet concentrates produced. This review article aims to investigate the effect of plateletpheresis devices on the quality parameters of produced platelet units.

Materials and Methods
This article reviewed the effects of different apheresis devices on the quality of platelet units by searching keywords in PubMed, Google Scholar, Science Direct, and Scopus databases and used 83 related articles.

Results
To evaluate the quality of the plateletpheresis concentrates, various parameters such as platelet count and yield, WBC and RBC count, platelet aggregation, metabolic activity, platelet activity, and the number of platelets microparticles are evaluated. The platelet counts in platelet concentrates obtained from apheresis devices follow AABB and European standards. In examining the metabolic activity of apheresis platelets in most studies, the level of glucose and pO2 decreased, lactate and pCO2 increased, and pH was within acceptable limits. When comparing platelet aggregation with different agonists, the platelet unit from the Amicus device showed the lowest response, while Trima Accel showed the highest response. Moreover, Amicus reported a higher level of platelet activation and microparticle production, whereas the lowest level of both belonged to Trima Accel.

Conclusions 
The quality of the plateletpheresis concentrate can be affected by the apheresis device. Although most available devices can provide platelet concentrates in accordance with the existing standards. According to the studies, the Trima Accel device provides a higher quality platelet concentrate than other devices (Haemonetics MCS+, Amicus, Cobe Spectra, Fresenius).

Key words: Plateletpheresis, Quality Control, Platelet Aggregation, Platelet Activation






Received: 29 Jan 2024
Accepted:  6 Apr 2024



Correspondence: Amini Kafi-Abad S., MD. Pathologist. Professor of Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine.
P.O.Box: 14665-1157, Tehran, Iran. Tel: (+9821) 88601573; Fax: (+9821) 88601555
E-mail: s.amini@ibto.ir
 
Type of Study: Review Article | Subject: Blood transfusion medicine
Published: 2024/06/30

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Scientific Journal of Iran Blood Transfus Organ

Designed & Developed by : Yektaweb