Volume 19, Issue 4 (winter 2022)                   Sci J Iran Blood Transfus Organ 2022, 19(4): 329-344 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shirdare M, Khansari S, Amiri F, Rekabi zadeh P. The angiogenic role of platelets in the physiologic, pathologic, and tumorigenic conditions. Sci J Iran Blood Transfus Organ 2022; 19 (4) :329-344
URL: http://bloodjournal.ir/article-1-1472-en.html
Full-Text [PDF 490 kb]   (713 Downloads)     |   Abstract (HTML)  (861 Views)
Full-Text:   (1171 Views)
   References:
  1. Holinstat M. Normal platelet function. Cancer Metastasis Rev 2017; 36(2): 195-8.
  2. Gremmel T, Frelinger AL 3rd, Michelson AD. Platelet Physiology. Semin Thromb Hemost 2016; 42(3): 191-204. 
  3. Mohammadi Dahj M, Amiri F, Deyhim MR, Nikoogoftar Zarif M. The evaluation of oxidative stress in platelet during storage of platelet concentrate. Research in Medicine 2020; 44(4): 587-93.
  4. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100(1): 27-40.
  5. Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105(S 06): S13-S33.
  6. Honnegowda TM, Kumar P, Udupa EGP, Kumar S, Kumar U, Rao P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plastic and Aesthetic Research 2015; 2: 243-9.
  7. Chen Db, Zheng J. Regulation of placental angiogenesis. Microcirculation 2014; 21(1): 15-25.
  8. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12: 18-34.
  9. Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G, et al. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/BAI1 signaling pathway. Angiogenesis 2020; 23(3): 325-38.
  10. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438(7070): 932-6.
  11. Langer HF, Daub K, Braun G, Schonberger T, May AE, Schaller M, et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 2007; 27(6): 1463-70.
  12. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11(2): 123-34.
  13. Stellos K, Kopf S, Paul A, Marquardt JU, Gawaz M, Huard  J,  et al. Platelets    in    regeneration. Semin Thromb Hemost 2010; 36(2): 175-84.
  14. Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets 2001; 12(5): 261-73.
  15. Italiano Jr JE, Mairuhu AT, Flaumenhaft R. Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 2010; 17(6): 578-84.
  16. Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 2005; 67(1): 30-8.
  17. Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Mol Dis 2006; 36(2): 182-7.
  18. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004; 124(3): 376-84.
  19. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak M. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20(9): 1487-95.
  20. Mause SF, Ritzel E, Liehn EA, Hristov M, Bidzhekov K, Muller-Newen G, et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 2010; 122(5): 495-506.
  21. Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet  microparticles   in   endothelial  progenitor cell cultures. Blood 2009; 114(3): 723-32.
  22. Ohtsuka M, Sasaki K-i, Ueno T, Seki R, Nakayoshi T, Koiwaya H, et al. Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients. Atherosclerosis 2013; 227(2): 275-82.
  23. Blair   P,  Flaumenhaft  R.    Platelet α-granules:   Basic biology and clinical correlates. Blood Rev 2009; 23(4): 177-89.
  24. Italiano Jr JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. Angiogenesis is regulated by a novel mechanism: pro-and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood 2008; 111(3): 1227-33.
  25. Qiao J, Gardiner EE. Introduction to a review series" Biomarkers of Platelet Activation". Platelets 2022; 33(4): 489-90.
  26. Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci 2008; 13(9): 3532-48.
  27. Pintucci G, Froum S, Pinnell J, Mignatti P, Rafii S, Green D. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb Haemost 2002; 88(11): 834-42.
  28. Weltermann A, Wolzt M, Petersmann K, Czerni C, Graselli U, Lechner K, et al. Large amounts of vascular endothelial growth factor at the site of hemostatic plug formation in vivo. Arterioscler Thromb Vasc Biol 1999; 19(7): 1757-60.
  29. Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004; 63(2): 226-35.
  30. Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A 2006; 103(4): 855-60.
  31. Franzén L, Dahlquist C. The effect of transforming growth factor-β on fibroblast cell proliferation in intact connective tissue in vitro. In Vitro Cell Dev Biol Anim 1994; 30(7): 460-3.
  32. Garside SA, Harlow CR, Hillier SG, Fraser HM, Thomas FH. Thrombospondin-1 inhibits angiogenesis and promotes follicular atresia in a novel in vitro angiogenesis assay. Endocrinology 2010; 151(3): 1280-9.
  33. Wang Z, Huang H. Platelet factor-4 (CXCL4/PF-4): an angiostatic chemokine for cancer therapy. Cancer Lett 2013; 331(2): 147-53.
  34. Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet JM, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101(8): 841-3.
  35. English D, Garcia JG, Brindley D. Platelet-released phospholipids link haemostasis and angiogenesis. Cardiovasc Res 2001; 49(3): 588-99.
  36. Beer MS, Stanton JA, Salim K, Rigby M, Heavens RP, Smith D, et al. EDG receptors as a therapeutic target in the  nervous  system.  Ann N Y Acad Sci 2000; 905(1): 118-31.
  37. Kluk MJ, Hla T. Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circ Res 2001; 89(6): 496-502.
  38. Kimura T, Watanabe T, Sato K, Kon J, Tomura H, Tamma K, et al. Sphingosine 1-phosphate stimulates proliferation and migration of human endothelial cells possibly through the lipid receptors, Edg-1 and Edg-3. Biochem J 2000; 348(1): 71-6.
  39. Takuwa Y, Du W, Qi X, Okamoto Y, Takuwa N, Yoshioka K. Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem 2010; 1(10): 298-306.
  40. English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 2000; 14(14): 2255-65.
  41. Asgarpour K, Shojaei Z, Amiri F, Ai J, Mahjoubin-Tehran M, Ghasemi F, et al. Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 2020; 18(1): 1-16.
  42. Goodarzi A, Valikhani M, Amiri F, Safari A. The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: Does it contradict the nursing role of mesenchymal stem cells? Cell Commun Signal 2022; 20(1): 21.
  43. Wojtukiewicz MZ, Sierko E, Hempel D, Tucker SC, Honn KV. Platelets and cancer angiogenesis nexus. Cancer Metastasis Rev 2017; 36(2): 249-62.
  44. Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost 2012; 108(10): 599-604.
  45. Salinas-Vera YM, Marchat LA, Gallardo-Rincón D, Ruiz-García E, Echavarría-Zepeda R, López-Camarillo C. AngiomiRs: MicroRNAs driving angiogenesis in cancer. Int J Mol Med 2019; 43(2): 657-70.
  46. Miao X, Rahman MU, Jiang L, Min Y, Tan S, Xie H, et al. Thrombin-reduced miR-27b attenuates platelet angiogenic activities in vitro via enhancing platelet synthesis of anti-angiogenic thrombospondin-1. J Thromb Haemost 2018; 16(4): 791-801.
  47. Wang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev 2009; 19(3): 205-11.
  48. Zimta AA, Baru O, Badea M, Buduru SD, Berindan-Neagoe I. The role of angiogenesis and pro-angiogenic exosomes in regenerative dentistry. Int J Mol Sci 2019; 20(2): 406.
  49. Li X, Xue X, Sun Y, Chen L, Zhao T, Yang W, et al. MicroRNA-326-5p enhances therapeutic potential of endothelial progenitor cells for myocardial infarction. Stem Cell Res Ther 2019; 10(1): 1-12.
  50. Dong Y, Alonso F, Jahjah T, Fremaux I, Grosset CF, Génot E. miR-155 regulates physiological angiogenesis but an miR-155-rich microenvironment disrupts the process by promoting unproductive endothelial sprouting. Cell Mol Life Sci 2022; 79(4): 1-23.
  51. Anene C, Graham AM, Boyne J, Roberts W. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochimica et Biophysica Acta 2018; 1864(8): 2633-43.
  52. Stakos DA, Gatsiou A, Stamatelopoulos K, Tselepis AD, Stellos K. Platelet microRNAs: From platelet biology to possible disease biomarkers and therapeutic targets. Platelets 2013; 24(8): 579-89.
  53. Langer HF, Chavakis T. Leukocyte–endothelial interactions in inflammation. J Cell Mol Med 2009; 13(7): 1211-20.
  54. Simon DI, Chen Z, Xu H, Li CQ, Dong JF, McIntire LV, et al. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). The J Exp Med 2000; 192(2): 193-204.
  55. Santoso S, Sachs UJ, Kroll H, Linder M, Ruf A, Preissner KT, et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med 2002; 196(5): 679-91.
  56. Diacovo TG, deFougerolles AR, Bainton DF, Springer TA. A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2. J Clin Invest 1994; 94(3): 1243-51.
  57. Totani L, Evangelista V. Platelet–leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol 2010; 30(12): 2357-61.
  58. Langer H, May AE, Daub K, Heinzmann U, Lang P, Schumm M, et al. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 2006; 98(2): e2-e10.
  59. Massberg S, Konrad I, Schurzinger K, Lorenz M, Schneider S, Zohlnhoefer D, et al. Platelets secrete stromal cell–derived factor 1α and recruit bone marrow–derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006; 203(5): 1221-33.
  60. Chavakis E, Aicher A, Heeschen C, Sasaki K-i, Kaiser R, El Makhfi N, et al. Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 2005; 201(1): 63-72.
  61. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling? In control of vascular function. Nat Rev Mol Cell Biol 2006; 7(5): 359-71.
  62. Karshovska E, Zernecke A, Sevilmis G, Millet A, Hristov M, Cohen CD, et al. Expression of HIF-1α in Injured Arteries Controls SDF-1α–Mediated Neointima Formation in Apolipoprotein E–Deficient Mice. Arterioscler Thromb Vasc Biol 2007; 27(12): 2540-7.
  63. Lev EI, Estrov Z, Aboulfatova K, Harris D, Granada JF, Alviar C, et al. Potential role of activated platelets in homing of human endothelial progenitor cells to subendothelial matrix. Thromb Haemost 2006; 96(10): 498-504.
  64. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 2001; 98(10): 3143-9.
  65. De Falco E, Carnevale R, Pagano F, Chimenti I, Fianchini L, Bordin A, et al. Role of NOX2 in mediating doxorubicin-induced senescence in human endothelial  progenitor  cells.  Mech Ageing Dev 2016; 159: 37-43.
  66. Becker RC, Sexton T, Smyth SS. Translational implications of platelets as vascular first responders. Circ Res 2018; 122(3): 506-22.
  67. Morel O, Jesel L, Hugel B, Douchet MP, Zupan M, Chauvin M, et al. Protective effects of vitamin C on endothelium damage and platelet activation during myocardial infarction in patients with sustained generation of circulating microparticles. J Thromb Haemost 2003; 1(1): 171-7.
  68. Walsh TG, Metharom P, Berndt MC. The functional role of platelets in the regulation of angiogenesis. Platelets 2015; 26(3): 199-211.
  69. Amiri F, Dahaj MM, Siasi NH, Deyhim MR. Treatment of platelet concentrates with the L-carnitine modulates platelets oxidative stress and platelet apoptosis due to mitochondrial reactive oxygen species reduction and reducing cytochrome C release during storage. J Thromb Thrombolysis 2021; 51(2): 277-85.
  70. Namba M, Tanaka A, Shimada K, Ozeki Y, Uehata S, Sakamoto T, et al. Circulating platelet-derived microparticles are associated with atherothrombotic events. Arterioscler Thromb Vasc Biol 2007; 27(1): 255-6.
  71. Tan KT, Tayebjee MH, Lynd C, Blann AD, Lip GY. Platelet microparticles and soluble P selectin in peripheral artery disease: relationship to extent of disease and platelet activation markers. Ann Med 2005; 37(1): 61-6.
  72. Duchez A-C, Boudreau LH, Naika GS, Bollinger J, Belleannée C, Cloutier N, et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci U S A 2015; 112(27): E3564-E73.
  73. Hartopo AB, Puspitawati I, Gharini PPR, Setianto BY. Platelet microparticle number is associated with the extent of myocardial damage in acute myocardial infarction. Arch Med Sci 2016; 12(3): 529-37.
  74. De Falco E, Bordin A, Chirivi M, Pagano F, Milan M, Iuliano M, et al. Human platelet lysate-derived extracellular vesicles enhance angiogenesis through miR-126. Cell Prolif 2022; 55(11): e13312. 
  75. Lin X, Yang F, Qi X, Li Q, Wang D, Yi T, et al. LncRNA DANCR promotes tumor growth and angiogenesis in ovarian cancer through direct targeting of miR-145. Mol Carcinog 2019; 58(12): 2286-96.
  76. Zhao M, Wang J, Xi X, Tan N, Zhang L. SNHG12 promotes angiogenesis following ischemic stroke via regulating miR-150/VEGF pathway. Neuroscience 2018; 390: 231-40.
  77. Shoeibi S, Mozdziak P, Mohammadi S. Important signals regulating coronary artery angiogenesis. Microvasc Res 2018; 117: 1-9.
  78. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 1986; 83(19): 7297-301.
  79. Rohrs JA, Sulistio CD, Finley SD. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue. NPJ Syst Biol Appl 2016; 2(1): 1-11.
  80. Mollica Poeta V, Massara M, Capucetti A, Bonecchi R. Chemokines and  chemokine  receptors: new targets for cancer immunotherapy. Front Immunol 2019; 10: 379.
  81. Aidoudi S, Bujakowska K, Kieffer N, Bikfalvi A. The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis. PLoS One 2008; 3(7): e2657.
  82. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 2003; 278(10): 8508-15.
  83. Gopinathan G, Milagre C, Pearce OM, Reynolds LE, Hodivala-Dilke K, Leinster DA, et al. Interleukin-6 Stimulates Defective AngiogenesisInterleukin-6 Stimulates Defective Angiogenesis. Cancer Res 2015; 75(15): 3098-107.
  84. Buergy D, Wenz F, Groden C, Brockmann MA. Tumor–platelet interaction in solid tumors. Int J Cancer 2012; 130(12): 2747-60.
  85. Sabrkhany S, Griffioen AW, oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 2011; 1815(2): 189-96.
  86. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci 2020; 77(9):1745-70.
  87. Pineto H, Verheul H, D’Amato R, Folkman J. Involvement of platelets in tumor angiogenesis? Lancet 1998; 352: 1775-9.
  88. Battinelli EM, Markens BA, Italiano Jr JE. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 2011; 118(5): 1359-69.
  89. Shao B, Wahrenbrock MG, Yao L, David T, Coughlin SR, Xia L, et al. Carcinoma mucins trigger reciprocal activation of platelets and neutrophils in a murine model of Trousseau syndrome. Blood 2011; 118(15): 4015-23.
  90. Troxler M, Dickinson K, Homer-Vanniasinkam S. Platelet function and antiplatelet therapy. J Br Surg 2007; 94(6): 674-82.
  91. Jain S, Harris J, Ware J. Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol 2010; 30(12): 2362-7.
  92. Trikha M, Zhou Z, Timar J, Raso E, Kennel M, Emmell E, et al. Multiple roles for platelet GPIIb/IIIa and αvβ3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 2002; 62(10): 2824-33.
  93. Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hämostaseologie 2014; 34(01): 54-62.
  94. Gay LJ, Felding-Habermann B. Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell 2011; 20(5): 553-4.
  95. Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE. Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol 2014; 229(8): 1005-15.
  96. Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol 2013; 117: 1-38.
  97. Thijssen VL, Poirier F, Baum LG, Griffioen AW. Galectins in the tumor endothelium: opportunities for combined  cancer  therapy.  Blood  2007; 110(8): 2819-27.
  98. Romaniuk MA, Tribulatti MV, Cattaneo V, Lapponi MJ, Molinas FC, Campetella O, et al. Human platelets express and are activated by galectin-8. Biochem J 2010; 432(3): 535-47.
  99. Etulain J, Negrotto S, Tribulatti MV, Croci DO, Carabelli J, Campetella O, et al. Control of angiogenesis by galectins involves the release of platelet-derived proangiogenic factors. PLoS One 2014; 9(4): e96402.
  100. Varon D, Hayon Y, Dashevsky O, Shai E. Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration. Thromb Res 2012; 130: S98-S9.
  101. Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer 2009; 124(8): 1773-7.
  102. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 113(5): 752-60.
  103. Peterson JE, Zurakowski D, Italiano JE, Michel LV, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis 2012; 15(2): 265-73.
  104. Sierko E, Wojtukiewicz MZ. Platelets and angiogenesis in malignancy. Semin Thromb Hemost 2004; 30(1): 95-108.
  105. Kitagawa H, Yamamoto N, Yamamoto K, Tanoue K, Kosaki G, Yamazaki H. Involvement of platelet membrane glycoprotein Ib and glycoprotein IIb/IIIa complex in thrombin-dependent and-independent platelet aggregations induced by tumor cells. Cancer Res 1989; 49(3): 537-41.
  106. Möhle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 1997; 94(2): 663-8.
  107. Palacios-Acedo AL, Langiu M, Crescence L, Mège D, Dubois C, Panicot-Dubois L. Platelet and Cancer-Cell Interactions Modulate Cancer-Associated Thrombosis Risk     in      Different       Cancer     Types.     Cancers 2022; 14(3): 730.
  108. Strasenburg W, Jóźwicki J, Durślewicz J, Kuffel B, Kulczyk MP, Kowalewski A, et al. Tumor Cell-Induced Platelet Aggregation as an Emerging Therapeutic Target for Cancer Therapy. Front Oncol 2022: 2679.
  109. Rak J, Wojtukiewicz MZ, Sierko E. Contribution of the hemostatic system to angiogenesis in cancer. Semin Thromb Hemost 2004; 30(1): 5-20.
  110. Han X, Guo B, Li Y, Zhu B. Tissue factor in tumor microenvironment: a systematic review. J Hematol Oncol 2014; 7(1): 1-8.
  111. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11(1): 1-15.
  112. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute  to  cancer-associated  thrombosis. Proc Natl Acad Sci U S A 2012; 109(32): 13076-81.
  113. Caine G, Lip G, Blann A. Platelet-derived VEGF, Flt-1, Angiopoietin-1 and P-selectin in breast and prostate cancer: further evidence for a role of platelets in tumour angiogenesis. Ann Med 2004; 36(4): 273-7.
  114. Salven P, Orpana A, Joensuu H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res 1999; 5(3): 487-91.
  115. Gonzalez F, Rueda A, Sevilla I, Alonso L, Villarreal V, Torres E, et al. Shift in the balance between circulating thrombospondin-1 and vascular endothelial growth factor in cancer patients: relationship to platelet α-granule content and primary activation. Int J Biol Markers 2004; 19(3): 221-8.
  116. Roy S, Driggs J, Elgharably H, Biswas S, Findley M, Khanna S, et al. Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation. Wound Repair Regen 2011; 19(6): 753-66. 
  117. Dovizio M, Sacco A, Patrignani P. Curbing tumorigenesis and malignant progression through the pharmacological control of the wound healing process. Vascular Pharmacology 2017; 89: 1-11.
  118. Dvorak HF. Tumors: wounds that do not heal--redux. Cancer Immunol Res 2015; 3(1): 1-11.
  119. Sabrkhany S, Kuijpers MJ, Egbrink MG, Griffioen AW. Platelets as messengers of early-stage cancer. Cancer Metastasis Rev 2021; 40: 563-73.
  120. Li Q, Wang Y, Jia W, Deng H, Li G, Deng W, et al. Low-Dose Anti-Angiogenic Therapy Sensitizes Breast Cancer to PD-1 BlockadeLow-Dose VEGFR2 Inhibitor Improves PD-1 Blockade. Clin Cancer Res 2020; 26(7): 1712-24.
  121. Thomeas V, Chow S, Gutierrez JO, Karovic S, Wroblewski K, Kistner-Griffin E, et al. Technical considerations in the development of circulating peptides as pharmacodynamic biomarkers for angiogenesis inhibitors. J Clin Pharmacol 2014; 54(6): 682-7.








Sci J Iran Blood Transfus Organ 2022;19 (4): 329-344
Review Article
 


The angiogenic role of platelets in the physiologic,
 pathologic, and tumorigenic conditions

Shirdare M.1, Khansari S.M.P2, Amiri F.3, Rekabizadeh P.4


1Vice Chancellor for Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
2Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
3School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
4Clinical Research Development Unit of Fatemieh Hospital, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract
Background and Objectives
Platelets are known as the smallest cells in the blood cells with a key role in homeostasis and blood coagulation. Today, by increasing the clinical studies, the role of platelets in angiogenesis and pathological conditions such as tumorigenesis has been considered.

Materials and Methods
In this narrative review article, different articles were searched in the PubMed and Google scholar databases and Google search engine using proper key words. By reviewing 121 articles related to platelets, angiogenesis, and tumorgenesis in recent years, the role of platelets in angiogenesis and tumorigenesis was evaluated.

Results
Platelets are the source of vesicles, granules and growth factors, adhesion molecules and receptors, MicroRNA that are released after platelet activation. Platelets have both types of angiogenesis and anti-angiogenesis factors that act depending on the type of stimuli. On the other hand, these factors can be modified under stressful environmental conditions such as tumor formation and can increase the tumor growth and metastasis.

Conclusions 
Considering the function of platelets in homeostasis, coagulation, inflammation, repair, angiogenesis, and tumorigenesis and by understanding their regulation mechanisms in the formation of vessels and development of tumors, they can be used in the development and improvement of  the therapeutic methods related to angiogenesis diseases.

Key words: Platelets, Tumorigenesis, Physiologic Angiogenesis, Glycoprotein







Received:  30 Oct 2022
Accepted: 30 Nov 2022



Correspondence: Amiri F., PhD of Hematology & Blood Banking. Assistant Professor in Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences.
Postal Code: 6517838741, Hamadan, Iran. Tel: (+9881) 38380109; Fax: (+9881) 38381017
E-mail: f.amiri@umsha.ac.ir

 
Type of Study: Review Article | Subject: Hematology
Published: 2022/12/31

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Scientific Journal of Iran Blood Transfus Organ

Designed & Developed by : Yektaweb