[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 20, Issue 2 (Summer 2023) ::
Sci J Iran Blood Transfus Organ 2023, 20(2): 143-154 Back to browse issues page
Reviewing the effect of exercise on hematopoietic stem cell mobilization
S. Hedayati , A.R. Rahimi , F. Aghaei , M. Mohsenzadeh
Keywords: Key words: Hematopoietic Stem Cell Transplantation, Exercise, G-CSF
Full-Text [PDF 549 kb]   (373 Downloads)     |   Abstract (HTML)  (523 Views)
Type of Study: Review Article | Subject: Hematology
Published: 2023/07/1
Full-Text:   (789 Views)
References:
  1. Majhail NS. How to Perform Hematopoietic Stem Cell Transplantation. Cardio Oncology 2021; 3(5): 742-6.
  2. Dzierzak E, Bigas A. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 2018; 22(5): 639-51.
  3. Boppart MD, De Lisio M, Witkowski S. Exercise and stem cells. Prog Mol Biol Transl Sci 2015; 135: 423-56.
  4. Chang HH, Liou YS, Sun DS. Hematopoietic stem cell mobilization. Tzu Chi Med J 2022; 34(3): 270-5.
  5. Bhattacharya D, Czechowicz A, Ooi AL, Rossi DJ, Bryder D, Weissman IL. Niche recycling through division-independent egress of hematopoietic stem cells. J Exp Med 2009; 206(12): 2837-50.
  6. Kröpfl JM, Stelzer I, Mangge H, Pekovits K, Fuchs R, Allard N, et al. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity. PLoS One 2014; 9(9): e106120.
  7. Kroepfl JM, Pekovits K, Stelzer I, Fuchs R, Zelzer S, Hofmann P, et al. Exercise increases the frequency of circulating hematopoietic progenitor cells, but reduces hematopoietic colony-forming capacity. Stem Cells Dev 2012; 21(16): 2915-25.
  8. Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, et al. Hypoxia mediates low cell-cycle activity and increases the proportion of long-term–reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol 2010; 38(4): 301-10. e2.
  9. Simpson E, Dazzi F. Bone marrow transplantation 1957-2019. Front Immunol 2019; 10: 1246.
  10. Thomas ED, Lochte Jr HL, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257(11): 491-6.
  11. Niederwieser D, Baldomero H, Bazuaye N, Bupp C, Chaudhri N, Corbacioglu S, et al. One and a half million hematopoietic stem cell transplants: continuous and differential improvement in worldwide access with the use of non-identical family donors. Haematologica 2022; 107(5): 1045-53.
  12. Ji C-h, Dai R-c, Wu H-t, Li Q-s, Liu S, He P-j, et al. Efficacy and safety of hematopoietic stem cell transplantation for hematologic malignancies: A protocol for an overview of systematic reviews and meta-analyses. Medicine: Case Reports and Study Protocols. 2021;2(12):e0174.
  13. Iftikhar R, Anwer F, Neupane K, Rafae A, Mahmood SK, Ghafoor T, et al. Allogeneic hematopoietic stem cell transplantation in aplastic anemia: current indications and transplant strategies. Blood Rev 2021; 47: 100772.
  14. Tan EY, Boelens JJ, Jones SA, Wynn RF. Hematopoietic stem cell transplantation in inborn errors of metabolism. Front Pediatr 2019; 7: 433.
  15. Alexander T, Greco R, Snowden JA. Hematopoietic stem cell transplantation for autoimmune disease. Annu Rev Med 2021; 72: 215-28.
  16. Kang E, Gennery A. Hematopoietic stem cell transplantation for primary immunodeficiencies. Hematol Oncol Clin North Am 2014; 28(6): 1157-70.
  17. de Vasconcelos P, Lacerda JF. Hematopoietic Stem Cell Transplantation for Neurological Disorders: A Focus on Inborn Errors of Metabolism. Front Cell Neurosci 2022; 16: 895511. 
  18. Bazinet A, Popradi G. A general practitioner’s guide to hematopoietic stem-cell transplantation. Curr Oncol 2019; 26(3): 187-91.
  19. Ozdemir ZN, Bozdağ SC. Graft failure after allogeneic hematopoietic stem cell transplantation. Transfus Apher Sci 2018; 57(2): 163-7.
  20. zouzegar  A,  Dey  BR, Spitzer TR. Peripheral blood or bone marrow stem cells? Practical considerations in hematopoietic stem cell transplantation. Transfus Med Rev 2019; 33(1): 43-50.
  21. Wilk CM, Manz MG, Boettcher S. Clonal hematopoiesis in hematopoietic stem cell transplantation. Curr Opin Hematol 2021; 28(2): 94-100.
  22. Körbling M, Freireich EJ. Twenty-five years of peripheral blood stem cell transplantation. Blood 2011; 117(24): 6411-6.
  23. Luo C, Wang L, Wu G, Huang X, Zhang Y, Ma Y, et al. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: a systematic review and network meta-analysis of preclinical studies. Stem Cell Res Ther 2021; 12(1): 1-19.
  24. Luo C, Wu G, Huang X, Zhang Y, Ma Y, Huang Y, et al. Efficacy of hematopoietic stem cell mobilization regimens in patients with hematological malignancies: a systematic review and network meta-analysis of randomized controlled trials. Stem Cell Res Ther 2022; 13(1): 1-19.
  25. Agha NH, Baker FL, Kunz HE, Graff R, Azadan R, Dolan C, et al. Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the β2-adrenergic receptor. Brain Behav Immun 2018; 68: 66-75.
  26. Menendez-Gonzalez JB, Hoggatt J. Hematopoietic Stem Cell Mobilization: Current Collection Approaches, Stem Cell Heterogeneity, and a Proposed New Method for Stem Cell Transplant Conditioning. Stem Cell Rev Rep 2021; 17(6): 1939-53.
  27. Chen J, Wang H, Zhou J, Feng S. Advances in the understanding of poor graft function following allogeneic hematopoietic stem-cell transplantation. Ther Adv Hematol 2020; 11: 2040620720948743.
  28. Devine H, Tierney DK, Schmit-Pokorny K, McDermott K. Mobilization of hematopoietic stem cells for use in autologous transplantation. Clin J Oncol Nurs 2010; 14(2): 212-22. 
  29. Theyab A, Algahtani M, Alsharif KF, Hawsawi YM, Alghamdi A, Alghamdi A, et al. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. Hematology 2021; 26(1): 628-36.
  30. Baker JM, Nederveen JP, Parise G. Aerobic exercise in humans mobilizes HSCs in an intensity-dependent manner. J Appl Physiol 2017; 122(1): 182-90.
  31. Chen J, Lazarus HM, Dahi PB, Avecilla S, Giralt SA. Getting blood out of a stone: Identification and management of patients with poor hematopoietic cell mobilization. Blood Rev 2021; 47: 100771.
  32. Kong Y. Poor graft function after allogeneic hematopoietic stem cell transplantation—an old complication with new insights☆. Semin Hematol 2019; 56(3): 215-220.
  33. Brockmann F, Kramer M, Bornhäuser M, Ehninger G, Hölig K. Efficacy and side effects of granulocyte collection in healthy donors. Transfus Med Hemother 2013; 40(4): 258-64.
  34. Giralt  S,  Costa L, Schriber J, DiPersio J, Maziarz R, McCarty J, et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transplant 2014; 20(3): 295-308.
  35. Schmid M, Kroepfl JM, Spengler CM. Changes in circulating stem and progenitor cell numbers following acute exercise in healthy human subjects: a systematic review and meta-analysis. Stem Cell Rev Rep 2021; 17(4): 1091-120.
  36. Wiskemann J, Huber G. Physical exercise as adjuvant therapy for patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 2008; 41(4): 321-9.
  37. Aziz JA, Smith C, Slobodian M, Du I, Shorr R, De Lisio M, et al. Impact of exercise training on hematological outcomes following hematopoietic cell transplantation: a scoping review. Clin Invest Med 2021; 44(2): E19-26.
  38. Chamorro-Viña C, Guilcher GM, Khan FM, Mazil K, Schulte F, Wurz A, et al. EXERCISE in pediatric autologous stem cell transplant patients: a randomized controlled trial protocol. BMC Câncer 2012; 12(1): 1-12.
  39. do Lago ASD, Zaffarani C, Mendonça JFB, Moran CA, Costa D, Gomes ELdFD. Effects of physical exercise for children and adolescents undergoing hematopoietic stem cell transplantation: a systematic review and meta-analysis. Hematol Transfus Cell Ther 2021; 43(3): 313-23.
  40. Niemiro GM, Parel J, Beals J, Van Vliet S, Paluska SA, Moore DR, et al. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol 2017; 122(3): 675-82.
  41. Keser I, Suyani E, Aki SZ, Sucak AGT. The positive impact of regular exercise program on stem cell mobilization prior to autologous stem cell transplantation. Transfus Apher Sci 2013; 49(2): 302-6.
  42. Wardyn GG, Rennard SI, Brusnahan SK, McGuire TR, Carlson ML, Smith LM, et al. Effects of exercise on hematological parameters, circulating side population cells, and cytokines. Exp Hematol 2008; 36(2): 216-23.
  43. Thijssen DH, Vos JB, Verseyden C, Van Zonneveld AJ, Smits P, Sweep FC, et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell 2006; 5(6): 495-503.
  44. Emmons R, Niemiro GM, De Lisio M. Exercise as an adjuvant therapy for hematopoietic stem cell mobilization. Stem Cells Int 2016; 2016: 7131359. 
  45. Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E, Gioia M, et al. Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. Am J Physiol Regul Integr Comp Physiol 2005; 289(5): R1496-503. 
  46. Shady KA, Shehata AM, Ebrahim AS. Impact of Acute Exercise by Yo-Yo Intermittent Recovery Test on Hematopoietic Stem Cells, Muscle Damage and Inflammations Markers in Football Players. The Scientific Journal of Physical Education and Sports Sciences 2020; 39(1): 1-14.
  47. Bonsignore  MR,  Morici  G,  Santoro  A, Pagano M, Cascio L, Bonanno A, et al. Circulating hematopoietic progenitor cells in runners. J Appl Physiol 2002; 93(5): 1691-7.
  48. Meyer T, Gabriel H, Rätz M, Müller HJ, Kindermann W. Anaerobic exercise induces moderate acute phase response. Med Sci Sports Exerc 2001; 33(4): 549-55.
  49. Brightman A, Heal J. Exercise and circulating hematopoietic progenitor cells (CFU-GM) in humans. Transfusion 1987; 27(2): 155-8.
  50. Jootar S, Chaisiripoomkere W, Thaikla O, Kaewborworn M. Effect of running exercise on hematological changes, hematopoietic progenitor cells (CFU-GM) and fibrinolytic system in humans. J Med Assoc Thai 1992; 75(2): 94-8.
  51. Möbius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, et al. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 2009; 107(6): 1943-50.
  52. Barrett A, Longhurst P, Sneath P, Watson J. Mobilization of CFU-C by exercise and ACTH induced stress in man. Exp Hematol 1978; 6(7): 590-4.
  53. Zaldivar F, Eliakim A, Radom-Aizik S, Leu SY, Cooper DM. The effect of brief exercise on circulating CD34+ stem cells in early and late pubertal boys. Pediatr Res 2007; 61(4): 491-5.
  54. Van Craenenbroeck EM, Vrints CJ, Haine SE, Vermeulen K, Goovaerts I, Van Tendeloo VF, et al. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. J Appl Physiol 2008; 104(4): 1006-13.
  55. Emmons R, Niemiro GM, Owolabi O, De Lisio M. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome. J Appl Physiol 2016; 120(6): 624-32.
  56. De Lisio M, Baker JM, Parise G. Exercise promotes bone marrow cell survival and recipient reconstitution post-bone marrow transplantation, which is associated with increased survival. Exp Hematol 2013; 41(2): 143-54.
  57. Baker J, De Lisio M, Parise G. Endurance exercise training promotes medullary hematopoiesis. FASEB J 2011; 25(12): 4348-57. 
  58. Pan HC. Retraction: The effect of exercise on mobilization of hematopoietic progenitor cells involved in the repair of sciatic nerve crush injury. J Neurosurg 2015; 123(6): 1607. 
  59. Bonsignore MR, Morici G, Riccioni R, Huertas A, Petrucci E, Veca M, et al. Hemopoietic and angiogenetic progenitors in healthy athletes: different responses to endurance and maximal exercise. J Appl Physiol 2010; 109(1): 60-7.
  60. Moradians V, Rahimi A, Javad Moosavi SA, Sahebkar Khorasani FS, Mazaherinejad A, Mortezazade M, et al. Effect of eight-week aerobic, resistive, and interval exercise routines on respiratory parameters in non-athlete women. Tanaffos 2016; 15(2): 96-100.               
  61. Shalaby MN, Sakoury MMA. Effect of different exercise intensities on CD34+ stem cells and physiological variables parameters. Life Sci J 2017; 14(1): 104-10.
  62. De Lisio M, Parise G. Characterization of the effects of exercise training on hematopoietic stem cell quantity and function. J Appl Physiol 2012; 113(10): 1576-84.
  63. Krüger K, Pilat C, Schild M, Lindner N, Frech T, Muders K, et al. Progenitor cell mobilization after exercise is related to systemic levels of G-CSF and muscle damage. Scand J Med Sci Sports 2015; 25(3): e283-e91.
  64. LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002; 111(4): 589-601. 
  65. Egan K, Singh V, Gidron A, Mehta J. Correlation between serum lactate dehydrogenase and stem cell mobilization. Bone Marrow Transplant 2007; 40(10): 931-4.
  66. Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the regulation of immune functions. Prog Mol Biol Transl Sci 2015; 135: 355-80.
  67. Smith L, Anwar A, Fragen M, Rananto C, Johnson R, Holbert D. Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol 2000; 82(1): 61-7.
  68. Pedersen BK, Steensberg A, Schjerling P. Exercise and interleukin-6. Curr Opin Hematol 2001; 8(3): 137-41.
  69. Pedersen BK, Ostrowski K, Rohde T, Bruunsgaard H. The cytokine response to strenuous exercise. Can J Physiol Pharmacol 1998; 76(5): 505-11.
  70. Rahimi A, Hojjat S, Besharati A, Shokrgozar A, Masoumi S. The effect of an Aerobic exercise on IL6, CRP and TNFα concentration in women. Annals of Biological Research 2012; 3(1): 125-31.
  71. Rahimi A, Kasbparast Jr M, Shokrgozar A. Aerobic capacity and Antioxidant profile in asthma patients. Biological Forum 2014; 6(2): 509-13.
  72. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109(5): 625-37.
  73. Schobersberger W, Hobisch-Hagen P, Fries D, Wiedermann F, Rieder-Scharinger J, Villiger B, et al. Increase in immune activation, vascular endothelial growth factor and erythropoietin after an ultramarathon run at moderate altitude. Immunobiology 2000; 201(5): 611-20.
  74. Cancelas JA, Williams DA. Stem cell mobilization by β2-agonists. Nat Med 2006; 12(3): 278-9.
  75. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124(2): 407-21.
  76. Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev 2012; 92(4): 1619-49.
  77. Cheng M, Zhou J, Wu M, Boriboun C, Thorne T, Liu T, et al. CXCR4-mediated bone marrow progenitor cell maintenance and mobilization are modulated by c-kit activity. Circ Res 2010; 107(9): 1083-93.
  78. Vaughn ML, Waller EK. Monitoring blood for CD34+ cells to determine timing of Hematopoietic Progenitor Cells Apheresis. Methods Mol Biol 2012; 904: 79-83. 
  79. Stroncek D, Clay M,  Herr G, Smith J, Jaszcz W, Ilstrup S, et al. The kinetics of G-CSF mobilization of CD34+ cells in healthy people. Transfus Med 1997; 7(1): 19-24.
  80. Lee S, Im SA, Yoo ES, Nam EM, Lee MA, Ahn JY, et al. Mobilization kinetics of CD34+ cells in association with modulation of CD44 and CD31 expression during continuous intravenous administration of G-CSF in normal donors. Stem Cells 2000; 18(4): 281-6.
  81. Cashen A, Lopez S, Gao F, Calandra G, MacFarland R, Badel K, et al. A phase II study of plerixafor
    (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with Hodgkin lymphoma. Biol Blood Marrow Transplant 2008; 14(11): 1253-61.
















Sci J Iran Blood Transfus Organ 2023;20 (2): 143-154
Review Article
 


Reviewing the effect of exercise on hematopoietic
stem cell mobilization

Hedayati S.1, Rahimi A.R.1, Aghaei F.1, Mohsenzadeh M.1


1Department of Exercise Physiology. Karaj Branch, Islamic Azad University, Karaj, Iran


Abstract
Background and Objectives
Hematopoietic stem cell transplantation (HSCT) is a promising treatment for the hematological disease. Although bone marrow is the major source of hematopoietic stem cells (HSCs), there is a small compartment of these cells in peripheral blood. Mobilization is the process of HSCs release into the peripheral blood, induced by several physiological and pharmaceutical factors. Granulocytecolony-stimulating factor (G-CSF) is the main exogenous drug for mobilization induction. The exercise is a non-invasive approach for mobilization stimulation. 

Materials and Methods
In this review, we searched the keywords of hematopoietic stem cell transplantation, mobilization, and exercise in reliable databases, including Google Scholar, PubMed, Scopus, and Elsevier. We selected the most relevant ones among potential candidates. Among the 98 selected articles, 63 articles met the necessary criteria and were evaluated.

Results
Exercise is safe and feasible in patients undergoing HSCT and can induce a 2-4 fold increase in peripheral blood HSC quantity. However, the influence is transient and drops back to baseline shortly after the exercise. Studies suggested that exercise-induced mobilization is intensity-dependent, and higher-intensity exercise induces mobilization more effectively than lower intensity.

Conclusions 
As the exercise’s effect is transient and insufficient compared to G-CSF, it cannot fully replace the exogenous G-CSF therapy in the clinic. However, it can be applied along with G-CSF as an adjuvant therapy to help with reducing apheresis time and duration, decreasing G-CSF dose and its related side effects, and preventing extra pharmaceutical interventions. 

Key words: Hematopoietic Stem Cell Transplantation, Exercise, G-CSF








Received: 7 Jan 2023
Accepted:1 Mar 2023



Correspondence: Rahimi A.R., PhD of Exercise Physiology. Karaj Branch, Islamic Azad University.
Postal code: 313-31483, Karaj, Iran. Tel: (+98261) 4418143-9; Fax: (+98261) 4418156
E-mail:
1- Acridine Orange
1- Biological safety cabinet
1- Platelet Concentrate
2- Food and Drug Administration
3- Normal Skin Flora
4- Platelet Rich Plasma-Platelet Concentrate
5- Eosin-Methylene blue
6- Thioglycolate
1- Acridine Orange
1- Biological safety cabinet
1- Platelet Concentrate
2- Food and Drug Administration
3- Normal Skin Flora
4- Platelet Rich Plasma-Platelet Concentrate
5- Eosin-Methylene blue
6- Thioglycolate
a_r_rahimi@hotmail.com

 
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hedayati S, Rahimi A, Aghaei F, Mohsenzadeh M. Reviewing the effect of exercise on hematopoietic stem cell mobilization. Sci J Iran Blood Transfus Organ 2023; 20 (2) :143-154
URL: http://bloodjournal.ir/article-1-1479-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 2 (Summer 2023) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.08 seconds with 37 queries by YEKTAWEB 4652