[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 19, Issue 1 (Spring 2022) ::
Sci J Iran Blood Transfus Organ 2022, 19(1): 75-97 Back to browse issues page
SARS-COV-2 Virus; Immune Responses and The Immunopathogenesis
N. Kazemibabaahmadi, M. Kheirandish
Keywords: SARS-CoV-2, Immune Response, Respiratory System
Full-Text [PDF 1540 kb]   (552 Downloads)     |   Abstract (HTML)  (710 Views)
Type of Study: Review Article | Subject: Infectious disease
Published: 2022/03/30
Full-Text:   (852 Views)
    References:
  1. Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev 2020; 34(2): 75-80.
  2. Whitworth J. COVID-19: a fast evolving pandemic. Trans R Soc Trop Med Hyg 2020; 114(4): 241-8. 
  3. Chakraborty I, Maity P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci Total Environ 2020; 728: 138882.
  4. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A. Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging 2020; 66: 35-41.
  5. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol 2020; 45(8): 100618.
  6. Shi Y, Wang G, Cai XP, Deng JW, Zheng L, Zhu HH, et al. An overview of COVID-19. J Zhejiang Univ Sci B 2020; 21(5): 343-60. 
  7. Jamwal S, Gautam A, Elsworth J, Kumar M, Chawla R, Kumar P. An updated insight into the molecular pathogenesis, secondary complications and potential therapeutics of COVID-19 pandemic. Life Sci 2020; 257: 118105. 
  8. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93(1): 250-6.
  9. Huang HC, Lai YJ, Liao CC, Yang WF, Huang KB, Lee IJ,  et al. Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine 2021; 74: 103712. 
  10. Noroozi-Aghideh A, Kheirandish M. Human cord blood-derived viral pathogens as the potential threats to the hematopoietic stem cell transplantation safety: A mini review. World J Stem Cells 2019; 11(2): 73-83.
  11. Golchin N, Kheirandish M, Sharifi Z, Samiee S, Kokhaei P, Pourpak Z. Quantification of viral genome in cord blood donors by real time PCR to investigate human herpesvirus type 8 active infection. Transfus Apher Sci 2015; 53(3): 378-80. 
  12. Abedi E, Kheirandish M, Sharifi Z, Samiee S, Kokhaei P, Pourpak Z, et al. Quantitative polymerase chain reaction for detection of human herpesvirus-7 infection in umbilical cord blood donors. Transpl Infect Dis 2015; 17(1): 21-4. 
  13. Abedi E, Kheirandish M, Sharifi Z, Samiee S, Kokhaei P, Pourpak Z, et al. Quantification of Active and Latent Form of Human Cytomegalovirus Infection in Umbilical Cord Blood Donors by Real-Time PCR. Int J Organ Transplant Med 2017; 8(3): 140-5.
  14. Jahangiryan A, Kheirandish M, Samiee Sh, Sharifi Z, Alaie M.   Determination  of  Epstein-Barr virus (EBV) incidence in umbilical cord blood (UCB) and assessment of virus DNA via Real-time PCR. Annals of Cancer Research and Therapy 2021; 29(1): 114-20.
  15. de Sousa E, Ligeiro D, Lérias JR, Zhang C, Agrati C, Osman M, et al. Mortality in COVID-19 disease patients: Correlating the association of major histocompatibility complex (MHC)  with  severe  acute respiratory syndrome 2 (SARS-CoV-2) variants. Int J Infect Dis 2020; 98: 454-9.
  16. Ng LFP, Hiscox J. Coronaviruses in animals and humans. BMJ 2020; 368: m634.
  17. Wei C, Shan KJ, Wang W, Zhang S, Huan Q, Qian W. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J Genet Genomics 2021; 48(12): 1111-21.
  18. Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med 2021; 23(2): e3303.
  19. Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev 2020; 34(2): 75-80.
  20. Callaway E. COVID super-immunity: one of the pandemic's great puzzles. Nature 2021; 598(7881): 393-4. 
  21. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis 2000; 30(6): 931-3. 
  22. Phan MVT, Ngo Tri T, Hong Anh P, Baker S, Kellam P, Cotten M. Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains. Virus Evol 2018; 4(2): vey035.
  23. Vasireddy D, Vanaparthy R, Mohan G, Malayala SV, Atluri P. Review of COVID-19 Variants and COVID-19 Vaccine Efficacy: What the Clinician Should Know? J Clin Med Res 2021; 13(6): 317-25. 
  24. Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci 2020; 5(5): 518-36. 
  25. Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). 2022 Jan 5. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 32150360.
  26. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23. 
  27. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2021; 54(2): 159-63.
  28. Yan S, Wu G. Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development. FASEB J. 2021; 35(5): e21573. 
  29. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 2012; 3(6): e00473-12.
  30. Czub M, Weingartl H, Czub S, He R, Cao J. Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine; 23(17-18): 2273-9. 
  31. El-Nabi SH, Elhiti M, El-Sheekh M. A new approach for COVID-19 treatment by micro-RNA. Med Hypotheses 2020; 143: 110203.
  32. Wong LR, Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses - are we our own worst enemy? Nat Rev Immunol 2022; 22(1): 47-56.
  33. Min L, Sun Q. Antibodies and Vaccines Target RBD of SARS-CoV-2. Front Mol Biosci 2021; 8: 671633. 
  34. Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B. 1.1. 7 in England. Nature 2021; 593(7858): 266-9.
  35. Peng J, Liu J, Mann SA, Mitchell AM, Laurie MT, Sunshine S, et al. Estimation of secondary household attack rates for emergent spike L452R SARS-CoV-2 variants detected by genomic surveillance at a community-based testing site in San Francisco. Clin Infect Dis 2022; 74(1): 32-9. 
  36. Allen H, Vusirikala A, Flannagan J, Twohig KA, Zaidi A, Chudasama D, et al. Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B. 1.617. 2): national case-control study. Lancet Reg Health Eur 2022; 12: 100252.
  37. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020; 182(4): 812-27.
  38. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021; 19(7): 409-24. 
  39. Chen X, Chen Z, Azman AS, Sun R, Lu W, Zheng N, et al. Neutralizing Antibodies Against SARS-CoV-2 Variants Induced by Natural Infection or Vaccination: A Systematic Review and Individual Data Meta-Analysis. Clin Infect Dis 2021: ciab646. 
  40. Davies, N.G. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England. MedRxiv, 2021: p. 2020.12. 24.20248822.
  41. Yuan S, Balaji S, Lomakin IB, Xiong Y. Coronavirus Nsp1: Immune Response Suppression and Protein Expression  Inhibition.   Front  Microbiol     2021;   12: 752214. 
  42. Malik YA. Properties of coronavirus and SARS-CoV-2. Malays J Pathol 2020; 42(1): 3-11.
  43. Zhou W, Wang W. Fast-spreading SARS-CoV-2 variants: challenges to and new design strategies of COVID-19 vaccines. Signal Transduct Target Ther 2021; 6(1): 226. 
  44. Gálvez JM, Chaparro-Solano HM, Pinzón-Rondón ÁM, Albornoz LL, Pardo-Oviedo JM, Zapata-Gómez FA, et al. Mutation profile of SARS-CoV-2 genome in a sample from the first year of the pandemic in Colombia. Infect Genet Evol 2022; 97: 105192.
  45. Peacock SJ. SARS-CoV-2 Variants: Past, Present and Future. In: Yano M., Matsuda F., Sakuntabhai A., Hirota S. (eds) Socio-Life Science and the COVID-19 Outbreak. Economics, Law, and Institutions in Asia Pacific. Springer, Singapore; 2022. p. 3-23.
  46. Jain J, Gaur S, Chaudhary Y, Kaul R. The molecular biology of intracellular events during Coronavirus infection cycle. Virusdisease 2020; 31(2): 75-9.
  47. Duong D. Alpha, Beta, Delta, Gamma: What's important to know about SARS-CoV-2 variants of concern? CMAJ. 2021; 193(27): E1059-E60. 
  48. Vlasova AN, Kenney SP, Jung K, Wang Q, Saif LJ. Deltacoronavirus Evolution and Transmission: Current Scenario and Evolutionary Perspectives. Front Vet Sci. 2021; 7: 626785. 
  49. Dubey A, Choudhary S, Kumar P, Tomar S. Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Curr Microbiol. 2021; 79(1): 20. 
  50. Khateeb J, Li Y, Zhang H. Emerging SARS-CoV-2 variants of concern and potential intervention approaches. Crit Care. 2021; 25(1): 244.
  51. Callaway E. Heavily mutated Omicron variant puts scientists on alert. Nature. 2021; 600(7887): 21.
  52. Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. Nature. 2021 Dec 23.
  53. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. 
  54. Huang B. Mucins produced by type II pneumocyte: culprits in SARS-CoV-2 pathogenesis. Cell Mol Immunol. 2021; 18(7): 1823-5. 
  55. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
  56. Samudrala PK, Kumar P, Choudhary K, Thakur N, Wadekar GS, Dayaramani R, et al. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J Pharmacol 2020; 883: 173375.
  57. J Alsaadi EA, Jones IM. Membrane binding proteins of coronaviruses. Future Virol 2019; 14(4): 275-86.
  58. Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 2022; 23(1): 21-39.
  59. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
  60. Gorbalenya  AE, Enjuanes L,  Ziebuhr  J,    Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res 2006; 117(1): 17-37.
  61. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
  62. Bittmann S. COVID-19: The Role of Angiotensin-2 Receptor in Transmission Process. J Regen Biol Med 2020; 2(2): 1-2.
  63. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med 2005; 11(8): 875-9.
  64. Schousboe P, Wiese L, Heiring Ch, Verder H, Poorisrisak P, Verder P, et al. Assessment of pulmonary surfactant in COVID-19 patients. Crit Care 2020; 24(1): 1-2.
  65. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P,  et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021; 184(1): 149-68.
  66. Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S,  et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 2021; 595(7865): 114-9.
  67. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433.
  68. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity 2020; 52(6): 910-41.
  69. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395(10223): 497-506.
  70. Retamozo S, Brito-Zerón P, Sisó-Almirall A, Flores-Chávez A, Soto-Cárdenas MJ, Ramos-Casals M. Haemophagocytic syndrome and COVID-19. Clin Rheumatol 2021; 40(4): 1233-44.
  71. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
  72. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J Heart Lung Transplant 2020; 39(5): 405-7.
  73. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33. 
  74. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y,  et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
  75. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M,  et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26(5): 681-7.
  76. Onofrio L, Caraglia M, Facchini G, Margherita V, Placido S, Buonerba C. Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Sci OA. 2020; 6(8): FSO605.
  77. Khanmohammadi  S,   Rezaei   N.   Role   of   Toll-like receptors in the pathogenesis of COVID-19. J Med Virol. 2021; 93(5): 2735-9. 
  78. Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol. 2016 Jul 11; 26(13): R568-R572.
  79. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 2020; 20(6): 355-62.
  80. McKenzie BA, Dixit VM, Power C. Fiery cell death: pyroptosis in the central nervous system. Trends Neurosci 2020; 43(1): 55-73.
  81. Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med 2021; 27(1): 28-33.
  82. Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health 2020; 13(11): 1619-29.
  83. Onofrio L, Caraglia M, Facchini G, Margherita V, Placido S, Buonerba C. Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Sci OA. 2020 Jul 30;6(8):FSO605.
  84. Bartleson JM. SARS-CoV-2, COVID-19 and the aging immune system. Nature Aging 2021; 1(9): 769-82.
  85. Kim YM, Shin EC. Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med 2021; 53(5): 750-60.
  86. Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 2022; 23(2): 165-76.
  87. Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P,  et al. Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. Immunohorizons 2021; 5(7): 568-80.
  88. Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol 2020; 205(2): 307-12.
  89. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol 2021; 21(11): 694-703.
  90. Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. Eur Rev Med Pharmacol Sci 2020; 24(7): 4016-26.
  91. Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol 2021; 191(1): 4-17.
  92. Gao YM, Xu G, Wang B, Liu BC. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J Intern Med 2021; 289(2): 147-61.
  93. Iba T, Levi M, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. in Semin Thromb Hemost 2020; 46(1): 89-95. 
  94. Simmons J, Pittet JF. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol 2015; 28(2): 227-36. 
  95. Papazian L, Calfee CS, Chiumello D, Luyt CE, Meyer NJ, Sekiguchi H, et al. Diagnostic workup for ARDS patients. Intensive Care Med 2016; 42(5): 674-85.
  96. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C,  et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
  97. Vaillancourt M, Jorth P. The unrecognized threat of secondary  bacterial  infections  with COVID-19. mBio 2020; 11(4): e01806-20.
  98. Wang A, Pope SD, Weinstein JS, Yu S, Zhang C, Booth CJ,  et al. Specific sequences of infectious challenge lead to secondary hemophagocytic lymphohistiocytosis-like disease in mice. Proc Natl Acad Sci U S A 2019; 116(6): 2200-9. 
  99. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N,  et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020; 369(6504): 718-24.
  100. Zhou R, To KK, Wong YC, Liu L, Zhou B, Li X, et al. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity 2020; 53(4): 864-77.
  101. Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370(6515): eabd4570.
  102. Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 2019; 129(9): 3625-39.
  103. Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, et al. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand J Immunol 2021; 93(4): e12998. 
  104. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021; 184(4): 861-80. 
  105. Crotty S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 2019; 50(5): 1132-48. 
  106. Meckiff BJ, Ramírez-Suástegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, et al. Imbalance of regulatory and cytotoxic  SARS-CoV-2-reactive   CD4+ T   cells      in COVID-19. Cell 2020; 183(5): 1340-53.
  107. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 2020; 183(4): 996-1012.
  108. Juno JA, Tan HX, Lee WS, Reynaldi A, Kelly HG, Wragg K,  et al. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat Med 2020; 26(9): 1428-34.
  109. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020; 584(7821): 437-42.
  110. Buchholz VR, Busch DH. Back to the future: effector fate during T cell exhaustion. Immunity 2019; 51(6): 970-2.
  111. Zander R, Schauder D, Xin G, Nguyen C, Wu X, Zajac A, et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 2019; 51(6): 1028-42.
  112. Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, Meyerholz DK, et al. Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 2016; 44(6): 1379-91.
  113. Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol 2020; 21(11): 1336-45.
  114. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181(7): 1489-501.
  115. Sekine  T,  Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin JB, Olsson A, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 2020; 183(1): 158-68.
  116. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 2020; 369(6506): 956-63.
  117. Anderson EM, Goodwin EC, Verma A, Arevalo CP, Bolton MJ, Weirick ME, et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 2021; 184(7): 1858-64.
  118. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 2020; 370(6522): 1339-43.
  119. Nguyen-Contant P, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR,  et al. S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. MBio 2020; 11(5): e01991-20.
  120. EstherDawen Yu, Eric Wang, Emily Garrigan, Benjamin Goodwin, Aaron Sutherland, James Chang, et al. Distinguishing COVID-19 infection and vaccination history by T cell reactivity. bioRxiv, 2021. doi: https://doi.org/10.1101/2021.12.15.472874
  121. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020; 370(6521): 1227-30.
  122. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 2020; 183(4): 1024-42.
  123. Huang I, Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis. J Intensive Care 2020. 8: 36.
  124. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ,  et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 2020; 5(1): 33.
  125. Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol 2021; 22(1): 74-85.
  126. Braun  J,  Loyal  L, Frentsch M, Wendisch D, Georg P, Kurth F,  et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020; 587(7833): 270-4.
  127. Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R, Havenar-Daughton C, et al. A perspective on potential  antibody-dependent  enhancement  of SARS-CoV-2. Nature 2020; 584(7821): 353-63.
  128. Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nouta J, Hoepel W,  et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 2021; 371(6532): eabc8378.
  129. Andreano E, Paciello I, Piccini G, Manganaro N, Pileri P, Hyseni I, et al. Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants. Nature 2021; 600(7889): 530-35.
  130. Shenoy P, Ahmed S, Paul A, Cherian S, Umesh R, Shenoy V,  et al. Hybrid immunity versus vaccine-induced immunity against SARS-CoV-2 in patients with autoimmune rheumatic diseases. Lancet. Rheumatol. 2022; 4(2): e80-e82. 
  131. Elibol E. Otolaryngological symptoms in COVID-19. Eur Arch Otorhinolaryngol 2021; 278(4): 1233-6.
  132. Ma X, Liu S, Chen L, Zhuang L, Zhang J, Xin Y.. The clinical characteristics of pediatric inpatients with SARS-CoV-2 infection: a meta-analysis and systematic review. J Med Virol 2021; 93(1): 234-40.
  133. Iacobucci G. Covid-19: Runny nose, headache, and fatigue are commonest symptoms of omicron, early data show. BMJ 2021; 375: n3103. 
  134. Wu T, Kang S, Peng W, Zuo C, Zhu Y, Pan L,  et al. Original Hosts, clinical features, transmission routes, and vaccine development for coronavirus Disease (COVID-19). Front Med (Lausanne) 2021; 8: 702066.
  135. Ryu BH, Hong SI, Lim SJ, Cho Y, Hwang C, Kang H, et al. Clinical Features of Adult COVID-19 Patients without Risk Factors before and after the Nationwide SARS-CoV-2 B. 1.617. 2 (Delta)-variant Outbreak in Korea: Experience from Gyeongsangnam-do.  J Korean Med Sci 2021; 36(49): e341.
  136. Chams N, Chams S, Badran R, Shams A, Araji A, Raad M, et al. COVID-19: a multidisciplinary review. Front Public Health. 2020; 8: 383. 
  137. Asakura H, Ogawa H. Perspective on fibrinolytic therapy in COVID-19: the potential of inhalation therapy against suppressed-fibrinolytic-type DIC. J Intensive Care 2020; 8:71. 
  138. Page EM, Ariëns RAS. Mechanisms of thrombosis and cardiovascular complications in COVID-19. Thromb Res 2021; 200: 1-8. 
  139. Xu P, Zhou Q, Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol 2020; 99(6): 1205-8.
  140. Mishra S, Choueka M, Wang Q, Hu C, Visone S, Silver M, et al. Intracranial Hemorrhage in COVID-19 Patients. J Stroke Cerebrovasc Dis 2021; 30(4): 105603.
  141. Gibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust 2020; 213(2): 54-6.
  142. Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol 2021; 17(6): 315-32.
  143. Piccolo V, Neri I, Filippeschi C, Oranges T, Argenziano G, Battarra VC, et al. Chilblain-like lesions during COVID-19 epidemic: a preliminary study on 63 patients. J Eur Acad Dermatol Venereol 2020; 34(7): e291-e3.
  144. Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğlu U. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ 2021; 372 :n436.
  145. Zhao D, Yao F, Wang L, Zheng L, Gao Y, Ye J, et al. A comparative study on the clinical features of coronavirus 2019 (COVID-19) pneumonia with other pneumonias. Clin Infect Dis 2020; 71(15): 756-61.
  146. Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA    2020;  324(6):603-5.
  147. Carvalho-Schneider C, Laurent E, Lemaignen A, Beaufils E, Bourbao-Tournois C, Laribi S, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect2021; 27(2): 258-63.
  148. Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes Metab Syndr 2021; 15(3): 869-75.













 



Sci J Iran Blood Transfus Organ 2022;19 (1):75-97
 
Review Article
 
SARS-COV-2 Virus; Immune Responses and The Immunopathogenesis 


Kazemi Babaahmadi N.1, Kheirandish M.1



1Blood  Transfusion  Research  Center,  High  Institute  for  Research  and  Education  in  Transfusion Medicine, Tehran, Iran



Abstract
Background and Objectives
Clinical features of SARS-COV-2 virus include fever, headache, cough, sore throat, and shortness of breath, and in severe forms it leads to disseminated intravascular coagulation, septic shock, and ultimately death. Excessive secretion of proinflammatory cytokines such as TNF-α, IL-6, and IL-1 leads to cytokine storms in this disease. The emergence of new variants of the SARS-CoV-2 virus, which occurs following a high mutation of the virus, increases its ability to escape the immune system and improve its transmission power. This process, in turn, can lead to ineffective vaccines against the virus. Due to the effect of the emerging viruses on the safety of blood and its products, in the first part of this article, the topic of virology, immune responses, and immunopathogenesis of this virus were discussed. The second part will discuss the viral-related issues of blood safety and its products.

Materials and Methods
In this review, keywords were searched in Science Direct, PubMed, Scopus databases and the sites of Nature, Science, Elsevier, Cell, BMJ, and Lancet journals, and finally 148 articles were used.

Results
In this article, in addition to a brief review of SARS-CoV-2 and its new variants from a virological point of view, its immunology and immunopathogenesis are also discussed.

Conclusions 
Due to the widespread SARS-CoV-2 virus and its unprecedented nature in causing the disease, it is essential to address it. However, based on the genomic nature of the virus, the high probability of various mutations and the emergence of new variants, accurate and comprehensive information on the virus abilities to escape the immune system and its pathogenic mechanisms is not yet available. There are many contradictions in these topics. However, the latest available and reliable scientific materials at the time of the preparation of this article have been tried to be reviewed.
 
Key words: SARS-CoV-2, Immune Response, Respiratory System




Received:    1 Jan 2022
Accepted: 13 Feb 2022



Correspondence: Kheirandish M., PhD of Immunology. Associate Professor of Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine.
P.O.Box: 14665-1157, Tehran, Iran. Tel: (+9821) 88602395; Fax: (+9821) 88628741
E-mail: m.kheirandisah@ibto.ir

 
Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemibabaahmadi N, Kheirandish M. SARS-COV-2 Virus; Immune Responses and The Immunopathogenesis. Sci J Iran Blood Transfus Organ. 2022; 19 (1) :75-97
URL: http://bloodjournal.ir/article-1-1439-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 19, Issue 1 (Spring 2022) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 4419