Volume 19, Issue 2 (Summer 2022)                   Sci J Iran Blood Transfus Organ 2022, 19(2): 166-182 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammad Hoseini F, Maleknia M, Amrovani M, Jodat J, Mansourian A. Factors associated with damage caused by RBC storage and their effect on Molecular aspects of associated inflammatoryProperties with blood transfusion and anesthetic agent after cardiac surgery. Sci J Iran Blood Transfus Organ 2022; 19 (2) :166-182
URL: http://bloodjournal.ir/article-1-1415-en.html
Full-Text [PDF 662 kb]   (711 Downloads)     |   Abstract (HTML)  (1123 Views)
Full-Text:   (1387 Views)
    References:
 
  1. Mahle WT, Matthews E, Kanter KR, Kogon BE, Hamrick SE, Strickland MJ. Inflammatory response after neonatal cardiac surgery and its relationship to clinical outcomes. Ann Thorac Surg 2014; 97(3): 950-6.
  2. Razmjooei F, Mansourian A, Kouhpyma S. Does socio-economic status of patients have an effect on clinical outcomes after coronary artery bypass grafting surgery. Middle East Journal of Family Medicine 2017; 7(10): 25-31.
  3. Corral-Velez V, Lopez-Delgado JC, Betancur-Zambrano NL, Lopez-Suñe N, Rojas-Lora M, Torrado H, et al. The inflammatory response in cardiac surgery: an overview of the pathophysiology and clinical implications. Inflamm Allergy Drug Targets 2015; 13(6): 367-70.
  4. Biadgo B, Shiferaw E, Woldu B, Alene KA, Melku M. Transfusion-transmissible viral infections among blood donors at the North Gondar district blood bank, northwest  Ethiopia: A  three  year retrospective study.PloS One 2017; 12(7): e0180416.
  5. Bove JR. Transfusion-transmitted diseases other than AIDS and hepatitis. Yale J Biol Med 1990; 63(5): 347-51.
  6. Flegel WA. Pathogenesis and mechanisms of antibody-mediated hemolysis. Transfusion 2015; 55(S2): S47-S58.
  7. Roubinian N. TACO and TRALI: biology, risk factors, and prevention strategies. Hematology Am Soc Hematol Educ Program 2018; 2018(1): 585-94. 
  8. Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus 2019; 17(1): 27.
  9. Cholette JM, Henrichs KF, Alfieris GM, Powers KS, Phipps R, Spinelli SL, et al. Washing red blood cells and platelets transfused in cardiac surgery reduces post-operative inflammation and number of transfusions: Results of a prospective, randomized, controlled clinical trial. Pediatr Crit Care Med 2012; 13(3): 290-9.
  10. Zhao D, Zhou J, Haraguchi G, Arai H, Mitaka C. Procalcitonin for the differential diagnosis of infectious and non-infectious systemic inflammatory response syndrome after cardiac surgery. J Intensive Care 2014; 2(1): 1-7.
  11. Tormey CA, Hendrickson JE. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood 2019; 133(17): 1821-30.
  12. Flegel WA, Natanson C, Klein HG. Does prolonged storage of red blood cells cause harm? Br J Haematol 2014; 165(1): 3-16.
  13. Lee J, Romero R,  Xu Y, Miranda J, Yoo W, Chaemsaithong P, et al. Detection of anti-HLA antibodies in maternal blood in the second trimester to identify patients at risk of antibody-mediated maternal anti-fetal rejection and spontaneous preterm delivery. Am J Reprod Immunol 2013; 70(2): 162-75.
  14. Gül-Klein S, Hegermann H, Röhle R, Schmelzle M, Tacke F, Schöning W, et al. Donor-Specific Antibodies Against Donor Human Leukocyte Antigen are Associated with Graft Inflammation but Not with Fibrosis Long-Term After Liver Transplantation: An Analysis of Protocol Biopsies. J Inflamm Res 2021; 14: 2697.
  15. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing 2020; 17(1): 1-16.
  16. Leicht HB, Weinig E, Mayer B, Viebahn J, Geier A, Rau M. Ceftriaxone-induced hemolytic anemia with severe renal failure: a case report and review of literature. BMC Pharmacol Toxicol 2018; 19(1): 67. 
  17. Reding-Bernal A, Sánchez-Pedraza V, Moreno-Macías H, Sobrino-Cossio S, Tejero-Barrera ME, Burguete-García AI, et al. Heritability and genetic correlation between GERD symptoms severity, metabolic syndrome, and inflammation markers in families living in Mexico City. PloS One 2017; 12(6): e0178815.
  18. Nam K, Jeon Y, Kim TK, Kim KB, Hwang HY, ChoYJ. Intraoperative transfusion and an increased preoperative C-reactive protein level are associated with  higher  mortality  after  off-pump  coronary artery bypass  grafting.  J  Thorac    Cardiovasc   Surg   2020; 159(2): 558-65.
  19. Tauriainen T, Kinnunen EM, Laitinen I, Anttila V, Kiviniemi T, Airaksinen JK, et al. Transfusion and blood stream infections after coronary surgery. Interact Cardiovasc Thorac Surg 2018; 26(2): 325-7.
  20. Maleknia M, Valizadeh A, Pezeshki S, Saki N. Immunomodulation in leukemia: cellular aspects of anti-leukemic properties. Clin Transl Oncol 2020; 22(1): 1-10.
  21. Spinella PC, Sniecinski RM, Trachtenberg F, Inglis HC, Ranganathan G, Heitman JW, et al. Effects of blood storage age on immune, coagulation, and nitric oxide parameters in transfused patients undergoing cardiac surgery. Transfusion 2019; 59(4): 1209-22.
  22. Wagener FA, Feldman E, de Witte T, Abraham NG. Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells. Proc Soc Exp Biol Med 1997; 216(3): 456-63.
  23. Meegan JE, Shaver CM, Putz ND, Jesse JJ, Landstreet SR, Lee HNR, et al. Cell-free hemoglobin increases inflammation, lung apoptosis, and microvascular permeability in murine polymicrobial sepsis. PLoS One 2020; 15(2): e0228727.
  24. Petri B, Phillipson M, Kubes P. The physiology of leukocyte recruitment: an in vivo perspective. J Immunol 2008; 180(10): 6439-46.
  25. Nyakundi BB, Tóth A, Balogh E, Nagy B, Erdei J, Ryffel B, et al. Oxidized hemoglobin forms contribute to NLRP3 inflammasome-driven IL-1β production upon intravascular hemolysis. Biochim Biophys Acta Mol Basis Dis 2019; 1865(2): 464-75.
  26. Deng JS, Jiang WP, Chen CC, Lee LY, Li PY, Huang WC, et al. Cordyceps cicadae mycelia ameliorate cisplatin-induced acute kidney injury by suppressing the TLR4/NF-κB/MAPK and activating the HO-1/Nrf2 and Sirt-1/AMPK pathways in mice. Oxid Med Cell Longev 2020; 2020: 7912763.
  27. Saw CLL, Wu Q, Kong AN. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin Med 2010; 5(1): 1-7.
  28. Kramer PA, Chacko BK, Ravi S, Johnson MS, Mitchell T, Barnes S, et al. Hemoglobin-associated oxidative stress in the pericardial compartment of postoperative cardiac surgery patients. Lab Invest 2015; 95(2): 132-41.
  29. Locke R, Paul D, Touch S, Mackley A, Maduskuie V, Fawcett P. Cytokine load in prestorage leukoreduced PRBC transfusions in premature infants. J Perinatol 2005; 25(8): 526-30.
  30. Merle NS, Grunenwald A, Figueres ML, Chauvet S, Daugan M, Knockaert S, et al. Characterization of renal injury and inflammation in an experimental model of intravascular hemolysis. Front Immunol 2018; 9: 179.
  31. Gáll T, Balla G, Balla J. Heme, heme oxygenase, and endoplasmic reticulum stress--a new insight into the pathophysiology  of  vascular  diseases.    Int J Mol Sci 2019; 20(15): 3675.
  32. Almeida  CB,  Souza LEB,  Leonardo FC, Costa FTM, Werneck CC, Covas DT, et al. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood 2015; 126(6): 711-20.
  33. Omodeo-Sale F, Cortelezzi L, Vommaro Z, Scaccabarozzi D, Dondorp A. Dysregulation of L-arginine metabolism and bioavailability associated to free plasma heme. Am J Physiol Cell Physiol 2010; 299(1): C148-54.
  34. Scrascia G, Rotunno C, Nanna D, Rociola R, Guida P, Rubino G, et al. Pump blood processing, salvage and re-transfusion improves hemoglobin levels after coronary artery bypass grafting, but affects coagulative and fibrinolytic systems. Perfusion 2012; 27(4): 270-7.
  35. Paparella D, Brister SJ, Buchanan MR. Coagulation disorders of cardiopulmonary bypass: a review. Intensive Care Med 2004; 30(10): 1873-81.
  36. Qi Z, Li W, Tan J, Wang C, Lin H, Zhou B, et al. Effect of ginsenoside Rh2 on renal apoptosis in cisplatin-induced nephrotoxicity in vivo. Phytomedicine 2019; 61: 152862.
  37. Al-Kahtani MA, Abdel-Moneim AM. Elmenshawy OM, El-Kersh MA. Hemin attenuates cisplatin-induced acute renal injury in male rats. Oxid Med Cell Longev 2014; 2014: 476430.
  38. Ren J, Li L, Wang Y, Zhai J, Chen G, Hu K. Gambogic acid induces heme oxygenase-1 through Nrf2 signaling pathway and inhibits NF-κB and MAPK activation to reduce inflammation in LPS-activated RAW264. 7 cells. Biomed Pharmacother 2019; 109: 555-62.
  39. Zhang M, Lin L, Xu C, Chai D, Peng F, Lin J. VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1-mediated mitochondrial oxidative stress and inflammation. Oxid Med Cell Longev 2018; 2018: 1714896.
  40. Sheu ML, Chao KF, Sung YJ, Lin WW, Lin-Shiau SY, Liu SH. Activation of phosphoinositide 3-kinase in response to inflammation and nitric oxide leads to the up-regulation of cyclooxygenase-2 expression and subsequent cell proliferation in mesangial cells. Cell Signal 2005; 17(8): 975-84. 
  41. Yan T, Yu X, Sun X, Meng D, Jia JM. A new steroidal saponin, furotrilliumoside from Trillium tschonoskii inhibits lipopolysaccharide-induced inflammation in Raw264. 7 cells by targeting PI3K/Akt, MARK and Nrf2/HO-1 pathways. Fitoterapia 2016; 115: 37-45. 
  42. Meng XM, Li HD, Wu WF, Ming-Kuen Tang P, Ren GL, Gao L, et al. Wogonin protects against cisplatin-induced acute kidney injury by targeting RIPK1-mediated necroptosis. Lab Invest 2018; 98(1): 79-94.
  43. Li XX, Zheng X, Liu Z, Xu Q, Tang H, Feng J, et al. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin Med 2020; 15(1): 1-13.
  44. Li F, Yao Y, Huang H, Hao H, Ying M. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways. Int Immunopharmacol 2018; 61: 277-82.
  45. Qiao J, Shuai Y, Zeng X, Xu D, Rao S, Zeng H, et alComparison of chemical compositions, bioactive ingredients, and in vitro antitumor activity of four products of Cordyceps (Ascomycetes) strains from China. Int J Med Mushrooms 2019; 21(4): 331-42.
  46. Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 2008; 19(5): 923-32.
  47. Thomas AM, Gerogianni A, McAdam MB, Fløisand Y, Lau C, Espevik T, et al. Complement component C5 and TLR molecule CD14 mediate heme-induced thromboinflammation in human blood. J Immunol 2019; 203(6): 1571-8.
  48. Vogel S, Thein SL. Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol 2018; 180(5): 761-7.
  49. van Bon L, Cossu M, Scharstuhl A, Pennings BW, Vonk MC, Vreman HJ, et al. Low heme oxygenase-1 levels in patients with systemic sclerosis are associated with an altered Toll-like receptor response: another role for CXCL4? Rheumatology (Oxford) 2016; 55(11): 2066-73.
  50. Khandare AV, Bobade D, Deval M, Patil T, Saha B, Prakash D. Expression of negative immune regulatory molecules, pro-inflammatory chemokine and cytokines in immunopathology of ECM developing mice. Acta Trop 2017; 172: 58-63.
  51. Wagener BM, Hu PJ, Oh JY, Evans CA, Richter JR, Honavar J, et al. Role of heme in lung bacterial infection after trauma hemorrhage and stored red blood cell transfusion: a preclinical experimental study. PLoS Med 2018; 15(3): e1002522.
  52. Jilek JL, Tian Y, Yu AM. Effects of microRNA-34a on the pharmacokinetics of cytochrome P450 probe drugs in mice. Drug Metab Dispos 2017; 45(5): 512-22.
  53. Shah SWA, Ishfaq M, Nasrullah M, Qayum A, Akhtar MU, Jo H, et al. Ammonia inhalation-induced inflammation and structural impairment in the bursa of fabricius and thymus of broilers through NF-κB signaling pathway. Environ Sci Pollut Res Int 2020: 27(11): 11596-11607.
  54. Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36(4): 595-612.
  55. Bogdan C. Nitric oxide and the regulation of gene expression. Trends Cell Biol 2001; 11(2): 66-75.
  56. Nounou HA, Deif MM, Shalaby MA. Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia. Lipids Health Dis 2012; 11(1): 1-10.
  57. Tu HT, Silvestre F, Bernard A, Douny C, Phuong NT, Tao CT, et al. Oxidative stress response of black tiger shrimp (Penaeus monodon) to enrofloxacin and to culture system. Aquaculture 2008; 285(1-4): 244-8.
  58. Liang Z, Liu R, Zhao D, Wang L, Sun M, Wang M, et al. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol 2016; 54: 523-8.
  59. Niknahad H, Jamshidzadeh A, Heidari R, Zarei M, Ommati MM. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin Exp Hepatol 2017; 3(3): 141-51.
  60. Marsden VS, O'Connor L, O'Reilly LA, Silke J, Metcalf D, Ekert PG, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 2002; 419(6907): 634-7.
  61. Shah SWA, Chen J, Han Q, Xu Y, Ishfaq M, Teng X. Ammonia inhalation impaired immune function and mitochondrial integrity in the broilers bursa of fabricius: implication of oxidative stress and apoptosis. Ecotoxicol Environ Saf 2020; 190: 110078.
  62. Shanmugarajan T, Sivaraman D, Somasundaram I, Arunsundar M, Krishnakumar E, Balaji R, et al. Influence of alpha lipoic acid on antioxidant status in D-galactosamine-induced hepatic injury. Toxicol Ind Health 2008; 24(10): 635-42.
  63. Vijay GKM, Hu C, Peng J, Garcia-Martinez I, Hoque R, Verghis RM, et al. Ammonia-induced brain edema requires macrophage and T cell expression of toll-like receptor 9. Cell Mol Gastroenterol Hepatol 2019; 8(4): 609-23.
  64. Paunel-Görgülü A, Wacker M, El Aita M, Hassan S, Schlachtenberger G, Deppe A, et al. cfDNA correlates with endothelial damage after cardiac surgery with prolonged cardiopulmonary bypass and amplifies NETosis in an intracellular TLR9-independent manner. Sci Rep 2017; 7(1): 17421.
  65. Dewyer NA, El-Sayed OM, Luke CE, Elfline M, Kittan N, Allen R, et al. Divergent effects of Tlr9 deletion in experimental late venous thrombosis resolution and vein wall injury. Thromb Haemost 2015; 114(11): 1028-37.
  66. Liao H-h, Zhang N, Meng Y-y, Feng H, Yang J-j, Li W-j, et al. Myricetin alleviates pathological cardiac hypertrophy via TRAF6/TAK1/MAPK and Nrf2 signaling pathway. Oxid Med Cell Longev 2019; 2019: 6304058.
  67. Ge ZW, Zhu XL, Wang BC, Hu JL, Sun JJ, Wang S, et al. MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int J Cardiol 2019; 280: 152-9.
  68. Zheng G, Pan M, Jin W, Jin G, Huang Y. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway. Int Immunopharmacol 2017; 45: 6-12.
  69. Shi Q, Wang W, Chen M, Zhang H, Xu S. Ammonia induces Treg/Th1 imbalance with triggered NF-κB pathway leading to chicken respiratory inflammation response. Sci Total Environ 2019; 659: 354-62.
  70. Harvey RD, Morgan ET. Cancer, inflammation, and therapy: effects on cytochrome P450–mediated drug metabolism and implications for novel immunotherapeutic agents. Clin Pharmacol Ther 2014; 96(4): 449-57.
  71. Valacchi G, Pagnin E, Phung A, Nardini M, Schock BC, Cross CE, et al. Inhibition of NFκB activation and IL-8 expression in human bronchial epithelial cells by acrolein. Antioxid Redox Signal 2005; 7(1-2): 25-31.
  72. Mansourian A, Askarzadeh M, Shabani M, Divsalar K. Comparison of duration of spinal anesthesia with lidocaine or lidocaine plus epinephrine between addicts and non-addicts. Addict Health 2012; 4(3-4): 95-101.
  73. Mansourian A, Malekmakan L, Tadayon T, Izadpanahi N. Comparison of maternal stress response to midazolam/fentanyl and propofol during cesarean delivery under spinal anesthesia: a double-blinded randomized controlled trial. Women’s Health Bulletin. 2019; 6(1): 1-7.
  74. Nelson L, Guo T, Lu J, Saper C, Franks N, Maze M. The sedative component of anesthesia is mediated by GABA A receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5(10): 979-84.
  75. Wu Q, Zhao Y, Duan W, Liu Y, Chen X, Zhu M. Propofol inhibits high glucose-induced PP2A expression in human umbilical vein endothelial cells. Vascul Pharmacol 2017; 91: 18-25.
  76. Meng J, Xin X, Liu Z, Li H, Huang B, Huang Y, et al. Propofol inhibits T-helper cell type-2 differentiation by inducing apoptosis via activating gamma-aminobutyric acid receptor. J Surg Res 2016; 206(2): 442-50.
  77. Sbrana S, Nunziata A, Storti S, Haxhiademi D, Mazzone A, Leone M, et al. Differential modulatory effects of Propofol and Sevoflurane anesthesia on blood monocyte HLA-DR and CD163 expression during and after cardiac surgery with cardiopulmonary bypass: a preliminary randomized flow cytometry study. Perfusion 2020; 35(1): 48-56.
  78. Philippidis P, Athanasiou T, Nadra I, Ashrafian H, Haskard DO, Landis RC, et al. Anti-inflammatory haemoglobin scavenging monocytes are induced following coronary artery bypass surgery. Eur J Cardiothorac Surg 2010; 37(6): 1360-6.
  79. Zhu Z, Yi S, Shan Z, Guo H, Ke S. Effect of isoflurane+ N2O inhalation and propofol+ fentanyl anesthesia on myocardial function as assessed by cardiac troponin, caspase-3, cyclooxygenase-2 and inducible nitric oxide synthase expression. Exp Ther Med 2017; 14(5): 4377-82.
  80. Li XH, McGrath KC, Tran VH, Li YM, Duke CC, Roufogalis BD, et al. Attenuation of proinflammatory responses by S-[6]-gingerol via inhibition of ROS/NF-Kappa B/COX2 activation in HuH7 cells. Evid Based Complement Alternat Med 2013; 2013: 146142.
  81. Ding XW, Sun X, Shen XF, Lu Y, Wang JQ, Sun ZR, et al. Propofol attenuates TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca 2+/CAMK II/ERK/NF-κB signaling pathway. Acta Pharmacol Sin 2019; 40(10): 1303-13.
  82. Marik PE. Propofol: an immunomodulating agent. Pharmacotherapy 2005; 25(5 Pt 2): 28S-33S.
  83. Zheng X, Huang H, Liu J, Li M, Liu M, Luo T. Propofol attenuates inflammatory response in LPS-activated microglia by regulating the miR-155/SOCS1 pathway. Inflammation 2018; 41(1): 11-9.
  84. Ge M, Yao W, Wang Y, Yuan D, Chi X, Luo G, et al. Propofol alleviates liver oxidative stress via activating Nrf2 pathway. J Surg Res 2015; 196(2): 373-81.
  85. Yao W, Han X, Zhang Y, Guan J, Ge M, Chen C, et al. Intravenous anesthetic protects hepatocyte from reactive oxygen species-induced cellular apoptosis during   liver  transplantation in vivo. Oxid  Med    Cell Longev 2018; 2018: 4780615. 
  86. Runchel C, Matsuzawa A, Ichijo H. Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxidants & redox signaling 2011; 15(1): 205-18.
  87. Ravingerová T, Barančík M, Strnisková M. Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 2003; 247(1): 127-38.
  88. Hao W, Zhao ZH, Meng QT, Tie ME, Lei SQ, Xia ZY. Propofol protects against hepatic ischemia/reperfusion injury via miR-133a-5p regulating the expression of MAPK6. Cell Biol Int 2017; 41(5): 495-504.
  89. Li Y, Zhong D, Lei L, Jia Y, Zhou H, Yang B. Propofol prevents renal ischemia-reperfusion injury via inhibiting the oxidative stress pathways. Cell Physiol Biochem 2015; 37(1): 14-26.
  90. Li S, Xiao FY, Shan PR, Su L, Chen DL, Ding JY, et al. Overexpression of microRNA-133a inhibits ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting DAPK2. J Hum Genet 2015; 60(11): 709-16.
  91. Migliaccio E, Giorgio M, Pelicci PG. Apoptosis and aging: role of p66Shc redox protein. Antioxidants & redox signaling 2006; 8(3-4): 600-8.
  92. Tsai HH, Lee WR, Wang PH, Cheng KT, Chen YC, Shen SC. Propionibacterium acnes-induced iNOS and COX-2 protein expression via ROS-dependent NF-κB and AP-1 activation in macrophages. J Dermatol Sci 2013; 69(2): 122-31.
  93. Zhu M, Chen J, Tan Z, Wang J. Propofol protects against high glucose–induced endothelial dysfunction in human umbilical vein endothelial cells. Anesth Analg 2012; 114(2): 303-9.
  94. Geraghty P, Eden E, Pillai M, Campos M, McElvaney NG, Foronjy RF. α1-Antitrypsin activates protein phosphatase 2A to counter lung inflammatory responses. Am J Respir Crit Care Med 2014; 190(11): 1229-42.
  95. Jia L, Wang F, Gu X, Weng Y, Sheng M, Wang G, et al. Propofol postconditioning attenuates hippocampus ischemia-reperfusion injury via modulating JAK2/STAT3 pathway in rats after autogenous orthotropic liver transplantation. Brain Res 2017; 1657: 202-7.
  96. Zheng D, Li Z, Wei X, Liu R, Shen A, He D, et al. Role of miR-148a in mitigating hepatic ischemia-reperfusion injury by repressing the TLR4 signaling pathway via targeting CaMKIIα in vivo and in vitro. Cell Physiol Biochem 2018; 49(5): 2060-72.
  97. Zhang Y, Ding X, Miao C, Chen J. Propofol attenuated TNF-α-modulated occludin expression by inhibiting Hif-1α/VEGF/VEGFR-2/ERK signaling pathway in hCMEC/D3 cells. BMC Anesthesiol 2019; 19(1): 1-11.
  98. Wang N, Wang M. Dexmedetomidine suppresses sevoflurane anesthesia-induced neuroinflammation through activation of the PI3K/Akt/mTOR pathway. BMC Anesthesiol 2019; 19(1): 134.
  99. Harston RK, McKillop JC, Moschella PC, Van Laer A, Quinones LS, Baicu CF, et al. Rapamycin treatment augments both protein ubiquitination and Akt activation in pressure-overloaded rat myocardium. Am J   Physiol   Heart  Circ  Physiol  2011; 300(5): H1696-H706.
  100. Zhang L, Zhang J, Yang L, Dong Y, Zhang Y, Xie Z. Isoflurane and sevoflurane increase interleukin-6 levels through the nuclear factor-kappa B pathway in neuroglioma cells. Br J Anaesth 2013; 110(suppl_1): i82-i91.
  101. Xing N, Xing F, Li Y, Li P, Zhang J, Wang D, et al. Dexmedetomidine improves propofol-induced neuronal injury in rat hippocampus with the involvement of miR-34a and the PI3K/Akt signaling pathway. Life Sci 2020; 247: 117359.
  102. Yin D, Zhou S, Xu X, Gao W, Li F, Ma Y, et al. Dexmedetomidine attenuated early brain injury in rats with subarachnoid haemorrhage by suppressing the inflammatory response: The TLR4/NF-κB pathway and the NLRP3 inflammasome may be involved in the mechanism. Brain Res 2018; 1698: 1-10.
  103. Wang Z, Yuan B, Fu F, Huang S, Yang Z. Hemoglobin enhances miRNA-144 expression and autophagic activation mediated inflammation of microglia via mTOR pathway. Sci Rep 2017; 7(1): 11861. 
  104. Posta N, Csősz É, Oros M, Pethő D, Potor L, Kalló G, et al. Hemoglobin oxidation generates globin-derived peptides in atherosclerotic lesions and intraventricular hemorrhage of the brain, provoking endothelial dysfunction. Lab Invest 2020; 100(7): 986-1002.
  105. Cholette JM, Pietropaoli AP, Henrichs KF, Alfieris GM, Powers KS, Gensini F, et al. Elevated free hemoglobin and decreased haptoglobin levels are associated with adverse clinical outcomes, unfavorable physiologic measures, and altered inflammatory markers in pediatric cardiac surgery patients. Transfusion 2018; 58(7): 1631-9.
  106. Kido R, Akizawa T, Fukuhara S. Haemoglobin concentration and survival of haemodialysis patients before and after experiencing cardiovascular disease: a cohort study from Japanese dialysis outcomes and practice pattern study (J-DOPPS). BMJ Open 2019; 9(9): e031476.
  107. Buehler PW, Baek JH, Lisk C, Connor I, Sullivan T, Kominsky D, et al. Free hemoglobin induction of pulmonary vascular disease: evidence for an inflammatory mechanism. Am J Physiol Lung Cell Mol Physiol 2012; 303(4): L312-L26.
  108. Ryter SW. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int J Mol Sci 2021; 22(11): 5509.
  109. Erdei J, Tóth A, Balogh E, Nyakundi BB, Bányai E, Ryffel B, et al. Induction of NLRP3 inflammasome activation by heme in human endothelial cells. Oxid Med Cell Longev 2018; 2018: 4310816.
  110. Sawicki KT, Chang HC, Ardehali H. Role of heme in cardiovascular physiology and disease. J Am Heart Assoc 2015; 4(1): e001138.
  111. Dutra FF, Alves LS, Rodrigues D, Fernandez PL, de Oliveira RB, Golenbock DT, et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci U S A 2014; 111(39): E4110-E8.
  112. Vinchi F,  Costa  da  Silva  M, Ingoglia  G, Petrillo   S, Brinkman N, Zuercher A, et al. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching  of  macrophages  in a mouse model of sickle cell disease. Blood 2016; 127(4): 473-86.
  113. Han Q, Tong J, Sun Q, Teng X, Zhang H, Teng X. The involvement of miR-6615-5p/Smad7 axis and immune imbalance in ammonia-caused inflammatory injury via NF-κB pathway in broiler kidneys. Poult Sci 2020; 99(11): 5378-88.
  114. Hu C, Huang K, Zhao L, Zhang F, Wu Z, Li L. Serum ammonia is a strong prognostic factor for patients with acute-on-chronic liver failure. Sci Rep 2020; 10(1): 1-13.
  115. Liu QX, Zhou Y, Li XM, Ma DD, Xing S, Feng JH, et al. Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult Sci 2020; 99(7): 3402-10.
  116. Kaji K, Takaya H, Saikawa S, Furukawa M, Sato S, Kawaratani H, et al. Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity. World J Gastroenterol 2017; 23(47): 8355-66. 
  117. Zheng D, Zang Y, Xu H, Wang Y, Cao X, Wang T, et al. MicroRNA-214 promotes the calcification of human aortic valve interstitial cells through the acceleration of inflammatory reactions with activated MyD88/NF-κB signaling. Clin Res Cardiol 2019; 108(6): 691-702.
  118. Wang X, Ha T, Hu Y, Lu C, Liu L, Zhang X, et al. MicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression. Oncotarget 2016; 7(52): 86926-36.
  119. Qi Y, Yao X, Du X. Midazolam inhibits proliferation
    and accelerates apoptosis of hepatocellular carcinoma zells by elevating microRNA-124-3p and suppressing PIM-1. IUBMB Life 2020; 72(3): 452-64.
  120. Liang YP, Liu Q, Xu GH,  Zhang J, Chen Y, Hua FZ, et al. The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes. J Bioenerg Biomembr 2019; 51(6): 381-92.
  121. Yuan H, Du S, Deng Y, Xu X, Zhang Q, Wang M, et al. Effects of microRNA-208a on inflammation and oxidative stress in ketamine-induced cardiotoxicity through Notch/NF-κB signal pathways by CHD9. Biosci Rep 2019; 39(5): BSR20182381.
  122. Zhang J, Li SF, Chen H, Song JX. MiR-106b-5p inhibits tumor necrosis factor-α-induced apoptosis by targeting phosphatase and tensin homolog deleted on chromosome 10 in vascular endothelial cells. Chin Med J (Engl) 2016; 129(12): 1406-12.
  123. Endo S, Yano A, Fukami T, Nakajima M, Yokoi T. Involvement of miRNAs in the early phase of halothane-induced liver injury. Toxicology 2014; 319: 75-84.
  124. Jia P, Teng J, Zou J, Fang Y, Zhang X, Bosnjak ZJ, et al. miR-21 contributes to xenon-conferred amelioration of renal ischemia–reperfusion injury in mice. Anesthesiology 2013; 119(3): 621-30.
  125. Cao W, Shi P, Ge JJ. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc Disord 2017; 17(1): 88.
  126. Yuan HY, Zhou CB, Chen JM, Liu XB, Wen SS, Xu G, et al. MicroRNA-34a targets regulator of calcineurin 1 to modulate endothelial inflammation after fetal cardiac bypass in goat placenta. Placenta 2017; 51: 49-56.































Sci J Iran Blood Transfus Organ 2022;19 (2): 166-182
Review Article
 


Factors associated with damage caused by RBC storage and their effect on Molecular aspects of associated inflammatory Properties with blood transfusion and anesthetic agent after cardiac surgery

Mohammd Hosseini F. 1, Maleknia M.2, Amrovani M.3, Jodat J.2, Mansourian A.1


1Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
2Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran


Abstract
Background and Objectives
Although there have been significant advances in the treatment of cardiovascular patients, but the side effects of treatment are the most critical challenges that cardiologists face today after surgery. Inflammation is one of the complications of using anesthetics and blood transfusions in patients. Therefore, in this study, the factors related to erythrocyte storage lesion and their effect on the molecular aspects of inflammation induced by blood transfusion and the use of anesthetics after heart surgery were investigated to reduce this problem.

Materials and Methods
Relevant literature was identified by a PubMed search (2001-2021); the search was limited to English-language papers containing the following terms and phrases, “Thoracic surgery”, “Inflammation”, “Anesthesia”, and “Blood Transfusion”.

Results
Factors related to the lysis of RBCs accumulate during the storage of blood products in the bags including Hb, Heme, and ammonia; can cause inflammation through distinct pathways in the post-surgical patients. Using different anesthetics can also trigger inflammatory responses. However, some of these anesthetics act as a double-edged sword and can induce inflammation or prevent it.

Conclusions 
Identifying the factors that increase due to immune response stimulation and the pathways preventing inflammation can be an excellent therapeutic strategy to reduce inflammation after cardiac surgery.

Key words: Thoracic Surgery, Inflammation, Anesthesia, Blood Transfusion



Received: 11 Aug 2021
Accepted:  8 Jan  2022



Correspondence: Mansourian A., Specialist in Anesthesiology. Assistant Professor of Faculty of Medicine, Yasuj University of Medical Sciences.
Postal code: 7591741417, Tehran, Iran. Tel: (+9874) 33337230; Fax: (+9874) 33337230
E-mail: shamimmoghadasi@gmail.com

 
Type of Study: Review Article | Subject: Imunohematology
Published: 2022/07/1

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Scientific Journal of Iran Blood Transfus Organ

Designed & Developed by : Yektaweb