[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 16, Issue 3 (Autumn 2019) ::
Sci J Iran Blood Transfus Organ 2019, 16(3): 172-185 Back to browse issues page
Stem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles
M. Shams , R. Halabian , M. Karimi , M. Ghollasi , A. Salimi
Keywords: Key words: Nanocomposites, Stem Cells, Glass, Bone Marrow
Full-Text [PDF 881 kb]   (1556 Downloads)     |   Abstract (HTML)  (2887 Views)
Type of Study: Research | Subject: Stem cells
Published: 2019/10/2
Full-Text:   (1502 Views)
    References:
 
  1. Aixue L, Zhongkui H, Xiuli Z, Xuesi C, Yang C, Yi L, et al. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Acta Biomater 2008; 4(4): 1005-15.
  2. Dinghua L, Wei Nie, Dejian Li, Weizhong Wang, Lixia Zheng, Jingtian Zhang, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration.Chemical Engineering Journal 2019; 362: 269-79.
  3. Shamsi M, Karimi M, Ghollasi MNezafati NShahrousvand MKamali M, et al. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-polyl-lactic acid nanofibers fabricated by electrospinning method. Mater Sci Eng C Mater Biol Appl 2017; 78: 114-23.
  4. Karageorgiou V, Tomkins M, Fajardo R, Meinel L, Snyder B, Wade K, et al. Porous silk fibroin3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and  in vivo.  J  Biomed  Mater  Res  A    2006; 78(2): 324-34.
  5. Kim SS, Ahn KM, Park MS, Lee JH, Choi CY, Kim BS. A poly (lactide-co-glycolide)/hydroxyapatite composite scaffold withenhanced osteoconductivity. J Biomed Mater Res A 2007; 80(1): 206-15.
  6. Yi Fan G, Ammar ZA, MuhammadA, Mohammed Rafiq AK, Rafaqat H. In-vitro characterization of antibacterial bioactive glass containing ceria.  Ceramics International 2014; 40: 729-37.
  7. Nabian N, Jahanshahi M, Rabiee SM. Synthesis of nano bioactive glass-ceramicpowders and it’s in vitrobioactivity study inbovine serum albumin protein. Molecular Structure 2011; 998: 37-41.
  8. Yi Fan G, Ammar ZA, Muhammad A, Mohammed Rafiq AK, Rafaqat H. Synthesis, Characterization and In vitro Study of Magnetic Biphasic Calcium Sulphate-Bioactive Glass.  Mater Sci Eng C Mater Biol Appl 2015; 53: 29-35.
  9. Fu-Yin H, Hsien-Wen H, Yu-Han C, Jing-Lun Y, LihRou R, Shiao-Wen T. Macroporous microbeads containing apatite-modifiedmesoporous bioactive glass nanofibres  for   bone   tissue   engineeringapplications.Mater Sci Eng C Mater Biol Appl 2018; 89: 346-54.
  10. Shie  MY,  Ding  SJ,  Chang  HC. The role of silicon in osteoblast-like cellproliferation and apoptosis. Acta Biomater 2011; 7: 2604-14.
  11. Moorth A, PariharPR, Saravanan S, Vairamani M, Selvamurugan N. Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblastproliferation. Mater Sci Eng C Mater Biol Appl 2014; 43: 458-64.
  12. Sharma K, Kedia S, Singh AK, Basak CB, Chauhan AK, Basu S, et al. Morphology and structural studies of laser treated 45S5 bioactive glass. J Non-Cryst. Solids 2016; 440: 43-8.
  13. Cui Xu, Yadong Zh, Wang H, Gu Y, Li L, Zou J, et al. An injectable borate bioactive glass cement for bone repair: preparation, bioactivity and setting mechanism. J Non-Cryst Solids  2016; 432: 150-7.
  14. Sriranganathan D, Chen X, Hing KA, Kanwal N, Hill RB. The effect of the incorporation of fluoride into strontium containing bioactive glasses.  J Non-Cryst Solids 2017; 457: 25-30.
  15. Romero-Gavilán F. Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J  Non-Cryst Solids 2016; 453: 66-73.
  16. Zhang K,Wang Y, Hillmyer MA, Francis LF. Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials 2004; 25(13): 2489-500.
  17. Hua Z, Ming J, PengZ, ChengZ, Long L. Preparation of poly-L-lactide/bioactive glass composite and evaluation of cytotoxicity in vitro.Transactions of Nonferrous Metals Society of China 2008; 18(5): 1151-6.
  18. Liu A,  Hong Z, Zhuang X, Chen X, Cui Y, Liu Y, et al. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites. Acta Biomater 2008; 4(4): 1005-15.
  19. Jaiswal AK, Chandra V, Bhonde RR. Mineralization of nanohydroxyapatite on electrospun poly(l-lactic acid)/gelatin by an alternate soaking process: A biomimetic scaffold for bone regeneration. Journal of Bioactive and Compatible Polymers 2012; 27(4): 356-74.
  20. Yao J, Radin S, Leboy PS, Ducheyne P. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials 2005; 26: 1935-43.
  21. Liu A, Hong Z, Zhuang X, Chen X, Cui Y, Liu Y, et al. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly (L-lactide) composites. Acta Biomater 2008; 4: 1005-15.
  22. João S. Reinforcement of Poly-L-lactic acid Electrospun Membranes with Strontium Borosilicate Bioactive Glasses for Bone Tissue Engineering. Acta Biomater 2016; 44: 168-77.
  23. Noh KT, Lee HY, Shin US, Kim HW. Composite nanofiber of bioactive glass nanofiller incorporated poly (lactic acid)  for   bone   regeneration. Mater  Lett 2010; 64(7): 802-5.
  24. Guan  Z,  Chen  L,  Li  X,  Cui  Y,  Liu  R.   Molecular mechanism of quercitrin on osteogenic differentiation and adipogenic differentiation of rat bone marrow stromal stem cells (rBMSCs). Chinese Herbal Medicines 2018; 10(2): 184-90.
  25. Wang S, Gao X, Gong W, Zhang Z, Chen X, Dong Y. Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomater  2014; 10(6): 2792-803.
  26. Yu L, Li YZhao KTang YCheng ZChen J, et al. A Novel Injectable Calcium Phosphate Cement-Bioactive Glass Composite for Bone Regeneration, PLOS One 2013; 8(4): e62570.
  27. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J 2008; 95: 4426-38.
  28. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310: 1139-43.
  29. Engler AJ,  Sen S, Sweeney HL,  Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126: 677-89.
  30. Shahrousvand M, Mohamad Sadeghi GM, Shahrousvand E, Ghollasi M, Salimi A. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf B Biointerfaces 2017; 156: 292-304.
  31. Thangaraju E, Srinivasan NT, Kumar R, Sehgal PK, Rajiv S. Fabrication of Electrospun Poly L-lactide and Curcumin Loaded Poly L-lactide Nanofibers for Drug Delivery. Fibers and Polymers 2012; 13(7): 823-30.
  32. Himanshu T, Singh SP, Sampath KA, Prerna M, Ashish J. Studies on Preparation and Characterization of 45S5 Bioactive Glass  Doped with (TiO2+ ZrO2) as Bioactive Ceramic Material. Bioceramics Development and Applications 2016; 6(1): 1-7.
  33. Shalumon KT, Sowmya S, Sathish D, Chennazhi KP, Nair SP, Jayakumar R. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/ chitosan nanofibers for bone and periodontal tissue engineering. J Biomed Nanotechnol 2013; 9: 430-40.
  34. Valenzuela F, Covarrubias C, Martinez C, Smith P, Diaz-Dosque M, Yazdani P. Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. J Biomed Mater Res B Appl Biomater 2012; 100: 1672-82.
  35. Mistry S, Kundu D, Datta S, Basu D. Effects of bioactive glass, hydroxyapatite and bioactive glass hydroxyapatite composite graft particles in the treatment of infrabony defects. J Indian Soc Periodontol 2012; 16: 241-6.
  36. Kargozar S. When size matters: Biological response to strontium- and cobaltsubstituted bioactive glass particles. Materials Today: Proceedings 2018; 5: 15768-75.
  37. Chou SY, ChangCM, Leduc PR. Composite polymer systems with control of local substrateelasticity and their  effect  on   cytoskeletal     and       morphologica characteristics  of  adherent  cells.   Biomaterials 2009; 30: 3136-42.
  38. Wu C, Zhu Y, Zheng R, Appleyard R, Howard A, Ramaswamy Y, et al. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly (DL-lactide-co-glycolide) films. Biomater 2009; 30: 2199-208.
  39. Li N, Jie Q, Zhu S, Wang R. A New Route to Prepare Macroporous Bioactive Sol Gel Glasse with High Mechanical Strength. Materials Letter 2004; 58: 2747-50.
  40. Seeman E, Devogelaer JP, Lorenc R, Spector T, Brixen K, Balogh A, et al. Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. J Bone Miner Res 2008; 23: 433-8.
  41. Panzavolta S, Torricelli P, Sturba L, Bracci B, Giardino R, Bigi A. Setting properties and in vitro bioactivity of strontium-enriched gelatin–calcium phosphate bone cements. J. Biomed Mater Res A 2008; 84: 965-72.
 
 
 
 
 
 
 


 
 
 
Sci J Iran Blood Transfus Organ 2019;16 (3): 172-185
Original Article
 

 

Stem Cell Bone Differentiation on Polyol Lactic
Acid Composite Nanoparticles Containing 45S5 Bioactive
Glass Nanoparticles
 
Shams M.1, Halabian R.2, Karimi M.1, Ghollasi M.3, Salimi A.4
 
1Nanotechnology and Advanced Materials Institute, Materials and Energy Research Center(MERC), Karaj, Iran
2Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
3Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
4Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
 
Abstract
Background and Objectives
Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and growth of bone marrow derived mesenchymal stem cells in the external environment.
 
Materials and Methods
In this experimental study, the bioactive glass nanoparticles were synthesized by planetary milling and coated on electrospun polyolactic acid nanofibers. The physicochemical and biological properties of the composite nanocarbon were evaluated by X-ray diffraction, scanning electron microscopy, MTT, acridine orange, and alkaline phosphatase assays.
 
Results
The physicochemical properties showed that the structure of synthesis bioactive glass and the lactic acid poly lactic acid fibers were completely nano size and the uniform distribution of nanoparticles was well placed on the fiber. The cell analysis demonstrated the significant increase proliferation and differentiation of mesenchymal stem cells to bone cells.In the MTT assay, cell survival was expressed in the composite nanostructure after 7 days of cell culture (1.96 ± 0.2), while the control sample (0.76 ± 0.08).
 
Conclusions 
According to the results of this study, the composite nanoscale composite is not cytotoxicity effects and has biocompatible. It is useful in bone tissue repair.
 
Key words: Nanocomposites, Stem Cells, Glass, Bone Marrow
 
 
 
 
 
 
Received:  10 Apr 2019
Accepted:   6 Jul  2019
 
 

Correspondence: Salimi A., PhD of Nanotechnology. Assistant Professor of Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences.    
P.O.Box: 14359-44711, Tehran, Iran. Tel: (+9821) 81263155; Fax: (+9821) 81263155
E-mail: salimibio@gmail.com
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shams M, Halabian R, Karimi M, Ghollasi M, Salimi A. Stem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles. Sci J Iran Blood Transfus Organ 2019; 16 (3) :172-185
URL: http://bloodjournal.ir/article-1-1261-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 16, Issue 3 (Autumn 2019) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4645