[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 12, Issue 3 (Autumn 2015) ::
Sci J Iran Blood Transfus Organ 2015, 12(3): 292-302 Back to browse issues page
The Effect of Mesenchymal Stem Cells on Hematopoetic Stem Cells Differentiation
M. Saleh , K. Shams Asanjan , A.A. Movassaghpour Akbari , P. Akbarzadeh , Z. Molaeipour
Keywords: Key words : Mesenchymal Stem Cells, Hematopoietic Stem Cells, Cell Differentiation
Full-Text [PDF 275 kb]   (3695 Downloads)     |   Abstract (HTML)  (16036 Views)
Type of Study: Review Article | Subject: Hematology
Published: 2015/09/2
Full-Text:   (7291 Views)
References :  
  1. Tavian M, Peault B. The changing cellular environments of hematopoiesis in human development in utero. Exp Hematol 2005; 33(9): 1062-9.
  2. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6(2): 93-106.
  3. Meghji S. Bone remodelling. Br Dent J 1992; 172(6): 235-42.
  4. Fliedner TM. The role of blood stem cells in hematopoietic cell renewal. Stem cells 1998; 16(6): 361-74.
  5. Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A, Simmons PJ. Mesenchymal stem cells. Arch Med Res 2003; 34(6): 565-71.
  6. Muguruma Y, Yahata T, Miyatake H, Sato T, Uno T, Itoh J, et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006; 107(5): 1878-87.
  7. Wang X, Hisha H, Taketani S, Adachi Y, Li Q, Cui W, et al. Characterization of mesenchymal stem cells isolated from mouse fetal bone marrow. Stem Cells 2006; 24(3): 482-93.
  8. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 2011; 12(10): 643-55.
  9. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, Suda T. In vivo and in vitro stem cell function of c-kit-and Sca-1-positive murine hematopoietic cells. Blood 1992; 80(12): 3044-50.
 
 
  1. Spangrude  GJ,  Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241(4861): 58-62.
  2. Adolfsson J, Borge OJ, Bryder D, Theilgaard-Monch K, Astrand-Grundstrom I, Sitnicka E, et al. Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 2001; 15(4): 659-69.
  3. Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M, et al. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 2005; 105(7): 2717-23.
  4. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994; 1(8): 661-73.
  5. Wang XA, Shook J, Edinger M, Warner N, Bush-Donovan Ch. Multiparametric immunophenotyping of  human hematopoietic stem cells and progenitor cells by flow cytometry. BD Biosciences 2012. Available from: https://www.bdbiosciences.com/documents/BD_Multiparametric_Immuno_Stem_Cells_AppNote.pdf.
  6. Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther 2013; 4(3): 71.
  7. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121(7): 1109-21.
  8. Horwitz EM, Keating A. Nonhematopoietic mesenchymal stem cells: what are they? Cytotherapy 2000; 2(5): 387-8.
  9. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276(5309): 71-4.
  10. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
  11. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
  12. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proc Nat Acad Sci U S A 1998; 95(7): 3908-13.
  13. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000; 9(6): 841-8.
  14. Tocci A, Luchetti L, Gallazzi A, Pinto RM, Arduini A, Bottazzo GF, Isacchi G, et al. Pediatric bone marrow mesenchymal stem cells favour the expansion of primitive over-committed cord-blood progenitor cells and modulate the effect of oncostatin M. 43rd Annual Meeting of the American Society of Hematology, Dec. 7-11, 2001, Orlando USA. Blood 2001; 96(11): A4258.
  15. Orkin SH, Zon LI. SnapShot: hematopoiesis. Cell 2008; 132(4): 712.
  16. Luis TC, Killmann NM, Staal FJ. Signal transduction pathways regulating hematopoietic stem cell biology: introduction to a series of Spotlight Reviews. Leukemia 2012; 26(1): 86-90.
  17. Kikuchi Y, Kume A, Urabe M, Mizukami H, Suzuki T, Ozaki K, et al. Reciprocal upregulation of Notch signaling molecules in hematopoietic progenitor and mesenchymal stromal cells. J Stem Cells Regen Med 2011; 7(2): 61-8.
  18. Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002; 99(7): 2369-78.
  19. Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 2010; 46(2): 281-5.
  20. Carlesso N, Aster JC, Sklar J, Scadden DT. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999; 93(3): 838-48.
  21. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6(3): 314-22.
  22. Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7(10): 1048-56.
  23. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423(6938): 409-14.
  24. Campbell C, Risueno RM, Salati S, Guezguez B, Bhatia M. Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Curr Opin Hematol 2008; 15(4): 319-25.
  25. Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PloS One 2009; 4(6): e5846.
  26. Hsu CL, Kikuchi K, Kondo M. Activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment. Blood 2007; 110(5): 1420-8.
  27. Torok-Storb B. Cellular interactions. Blood 1988; 72(2): 373-85.
  28. Moreau I, Duvert V, Caux C, Galmiche MC, Charbord P, Banchereau J, et al. Myofibroblastic stromal cells isolated from human bone marrow induce the proliferation of both early myeloid and B-lymphoid cells. Blood 1993; 82(8): 2396-405.
  29. Cherry, Yasumizu R, Toki J, Asou H, Nishino T, Komatsu Y, et al. Production of hematopoietic stem cell-chemotactic factor by bone marrow stromal cells. Blood 1994; 83(4): 964-71.
  30. Guerriero A, Worford L, Holland HK, Guo GR, Sheehan K, Waller EK. Thrombopoietin is synthesized by bone marrow stromal cells. Blood 1997; 90(9): 3444-55.
  31. Mehrasa R, Vaziri H, Oodi A, Khorshidfar M, Nikogoftar M, Golpour M, et al. Mesenchymal stem cells as a feeder layer can prevent apoptosis of expanded hematopoietic stem cells derived from cord blood. Int J Mol Cell Med 2014; 3(1): 1-10.
  32. da Silva CL, Goncalves R, Crapnell KB, Cabral JM, Zanjani ED, Almeida-Porada G. A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. Exp Hematol 2005; 33(7): 828-35.
  33. Wagner W, Saffrich R, Ho AD. The Stromal Activity of Mesenchymal Stromal Cells. Transfus Med Hemother 2008; 35(3): 185-93.
  34. Wagner W, Saffrich R, Wirkner U, Eckstein V, Blake J, Ansorge A, et al. Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells 2005; 23(8): 1180-91.
  35. Zou J, Zou P, Wang J, Li L, Wang Y, Zhou D, et al. Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells. Ann Hematol 2012; 91(6): 813-23.
  36. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000; 28(8): 875-84.
  37. Devine SM. Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl 2002; 38: 73-
9.
  1. Mishima S, Nagai A, Abdullah S, Matsuda C, Taketani T, Kumakura S, et al. Effective ex vivo expansion of hematopoietic stem cells using osteoblast-differentiated mesenchymal stem cells is CXCL12 dependent. Eur J Haematol 2010; 84(6): 538-46.
  2. Liang S, LiHua H. The normal flora may contribute to the quantitative preponderance of myeloid cells under physiological conditions. Med Hypothese 2011; 76(1): 141-3.
  3. Hirano T, Taga T, Matsuda T, Hibi M, Suematsu S, Tang B, et al. Interleukin 6 and its receptor in the immune response and hematopoiesis. Int J Cell Cloning 1990; 8 Suppl 1: 155-66; discussion 166-7.
  4. Rappold I, Watt SM, Kusadasi N, Rose-John S, Hatzfeld J, Ploemacher RE. Gp130-signaling synergizes with FL and TPO for the long-term expansion of cord blood progenitors. Leukemia 1999; 13(12): 2036-48.
  5. Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem 2008; 283(15): 9499-503.
  6. Solar GP, Kerr WG, Zeigler FC, Hess D, Donahue C, de Sauvage FJ, et al. Role of c-mpl in early hematopoiesis. Blood 1998; 92(1): 4-10.
  7. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002; 100(5): 1532-42.
  8. Nandurkar HH, Robb L, Begley CG. The role of IL-11 in hematopoiesis as revealed by a targeted mutation of its receptor. Stem Cells 1998; 16 Suppl 2: 53-65.
  9. Kruger C, Laage R, Pitzer C, Schabitz WR, Schneider A. The hematopoietic factor GM-CSF (granulocyte-macrophage colony-stimulating factor) promotes neuronal differentiation of adult neural stem cells in vitro. BMC Neurosci 2007; 8: 88.
  10. Han JY, Goh RY, Seo SY, Hwang TH, Kwon HC, Kim SH, et al. Cotransplantation of cord blood hematopoietic stem cells and culture-expanded and GM-CSF-/SCF-transfected mesenchymal stem cells in SCID mice. J Korean Med Sci 2007; 22(2): 242-7.
  11. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452(7186): 442-7.
  12. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25(6): 977-88.
  13. Thevenot PT, Nair AM, Shen J, Lotfi P, Ko CY, Tang L. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials 2010; 31(14): 3997-4008.
  14. Bernstein A, Forrester L, Reith AD, Dubreuil P, Rottapel R. The murine W/c-kit and Steel loci and the control of hematopoiesis. Semin Hematol 1991; 28(2): 138-42.
  15. Muta K, Krantz SB, Bondurant MC, Wickrema A. Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid  progenitor  cells.  J  Clin  Invest 1994; 94(1):
34-43.
  1. Dolznig H, Habermann B, Stangl K, Deiner EM, Moriggl R, Beug H, et al. Apoptosis protection by the Epo target Bcl-X(L) allows factor-independent differentiation of primary erythroblasts. Curr Biol 2002; 12(13): 1076-85.
  2. Miyagawa S, Kobayashi M, Konishi N, Sato T, Ueda K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br J Haematol 2000; 109(3): 555-62.
  3. von Lindern M, Zauner W, Mellitzer G, Steinlein P, Fritsch G, Huber K, et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 1999; 94(2): 550-9.
  4. Zermati Y, Varet B, Hermine O. TGF-beta1 drives and accelerates erythroid differentiation in the epo-dependent UT-7 cell line even in the absence of erythropoietin. Exp Hematol 2000; 28(3): 256-66.
  5. Lazar-Karsten P, Dorn I, Meyer G, Lindner U, Driller B, Schlenke P. The influence of extracellular matrix proteins and mesenchymal stem cells on erythropoietic cell maturation. Vox Sang 2011; 101(1): 65-76.
  6. Heike T, Nakahata T. Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta 2002; 1592(3): 313-21.
  7. Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 2008; 42(3): 277-88.
  8. Li LN, Han ZB, Wang YW, Luo WF, Ji YR, Yang ZX, et al. Supportive effects of conditioned culture media of human umbilical cord mesenchymal stem cells on hematopoiesis in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2012; 20(4): 975-80. [Article in Chinese]
  9. Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 2005; 23(1): 69-74.
  10. Noort WA, Kruisselbrink AB, in't Anker PS, Kruger M, van Bezooijen RL, de Paus RA, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002; 30(8): 870-8.
  11. Harvey K, Dzierzak E. Cell-cell contact and anatomical compatibility in stromal cell-mediated HSC support during development. Stem Cells 2004; 22(3): 253-8.
  12. Leisten I, Kramann R, Ventura Ferreira MS, Bovi M, Neuss S, Ziegler P, et al. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials 2012; 33(6): 1736-47.
  13. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 2010; 14(1-2): 337-50.
  14. Alakel N, Jing D, Muller K, Bornhauser M, Ehninger G, Ordemann R. Direct contact with mesenchymal stromal cells affects migratory behavior and gene expression profile of CD133+ hematopoietic stem cells during ex vivo expansion. Exp Hematol 2009; 37(4): 504-13.
  15. Khoury M, Drake A, Chen Q, Dong D, Leskov I, Fragoso MF, et al. Mesenchymal stem cells secreting angiopoietin-like-5 support efficient expansion of human hematopoietic stem cells without compromising their repopulating potential. Stem Cells Dev 2011; 20(8): 1371-81.
  16. Wang JF, Wang LJ, Wu YF, Xiang Y, Xie CG, Jia BB, et al. Mesenchymal stem/progenitor cells in human
    umbilical cord blood as support for ex vivo expansion of CD34(+) hematopoietic stem cells and for chondrogenic differentiation. Haematologica 2004; 89(7): 837-44.
  17. Andrade PZ, dos Santos F, Almeida-Porada G, da Silva CL, JM SC. Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem / progenitor cells in co-culture with mesenchymal stem cells. Mol Biosyst 2010; 6(7): 1207-15.
 
 
 
 
 
 


 
 
 
 
 
Sci J Iran Blood Transfus Organ 2015; 12(3): 292-302
 
Review Article
 
 

The Effect of Mesenchymal Stem Cells on Hematopoetic
Stem Cells Differentiation
 
Saleh M.1, Shams Asanjan K.1,2,3, Movassaghpour Akbari A.A.1, Akbarzadeh P.4,
Molaeipour Z.1
 
1Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
3Tabriz Educational Regional Blood Transfusion Center, Tabriz, Iran
4Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
 
Abstract
Background and Objectives
Bone marrow microenviroment contains cellular and acellular compartments. Cellular compartment contains hematopoetic stem cells, mesenchymal stem cells and some other kinds of stromal cells while acellular compartment includes scaffold proteins known as an extra cellular matrix. Hematopoietic stem cells resided in the bone marrow interact with a bone marrow microenvironment called the stem cell niche. Hematopoietic stem cells (HSCs) are able to produce the variety of blood cells and bone marrow microenvironment plays a supportive role for the cells in this process. Recent studies over in-vitro models demonstrating the essential role of stromal cells in hematopoiesis reflected the view that cell-cell contact in the marrow microenvironment is critical for hematopoietic stem cells normal function and differentiation. Direct cell-cell contacts and cytokines secreted by mesenchymal stem cells  play a critical role in the coculture of hematopoetic stem cells and mesenchymal stem cells and the determination of the fate of hematopoetic stem cells. Several studies demonstrate the effect of mesenchymal stem cells on self renewal, expansion, proliferation and differentiation of hematopoetic stem cells in vitro that lead to different and contradictory results. In this paper, we will investigate the effect of  mesenchymal stem cells on differentiation of hematopoietic stem cells in vitro.
 
Materials and Methods
The data of the present article were obtained through the review of many papers published on the effect of stem cells.
 
Results
The review of different studies has shown the necessity to survey the effect of mesenchymal stem cells on differentiation of different cell lines as a laboratory model.
 
Conclusions
Direct cell-cell contact between mesenchymal stem cells and hematopoietic stem cells and the signaling pathways activated by this interaction enable proliferation and expansion of HSCs in the undifferentiated state.
 
Key words: Mesenchymal Stem Cells, Hematopoietic Stem Cells, Cell Differentiation
 
Received: 23 Aug 2014
Accepted:17 Jan  2015
 
 
 
 

Correspondence: Shams Asanjan K., PhD of Hematology and Blood Banking. Assistant Professor of Hematology Oncology Research Center, Tabriz University of Medical Sciences and Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine and Tabriz Educational Regional Blood Transfusion Center.
P.O.Box: 51335, Tabriz , Iran. Tel: (+98411) 2871515; Fax: (+98411) 2871515
                E-mail: k.shams@ibto.ir
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saleh M, Shams Asanjan K, Movassaghpour Akbari A, Akbarzadeh P, Molaeipour Z. The Effect of Mesenchymal Stem Cells on Hematopoetic Stem Cells Differentiation. Sci J Iran Blood Transfus Organ 2015; 12 (3) :292-302
URL: http://bloodjournal.ir/article-1-894-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 3 (Autumn 2015) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.07 seconds with 39 queries by YEKTAWEB 4660