[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 20, Issue 4 (Winter 2023) ::
Sci J Iran Blood Transfus Organ 2023, 20(4): 335-345 Back to browse issues page
Cord blood stem cells: an overview of biology and current applications
S.M.S. Pezeshki , M. Ghasemzadeh , E. Hosseini
Keywords: Key words: Mesenchymal Stem Cells, Stem Cells, Umbilical Cord, Wharton Jelly
Full-Text [PDF 470 kb]   (183 Downloads)     |   Abstract (HTML)  (660 Views)
Type of Study: Review Article | Subject: Hematology
Published: 2023/12/31
Full-Text:   (156 Views)



Sci J Iran Blood Transfus Organ 2023;20 (4): 335-345
Review Article
 
Cord blood stem cells: an overview of biology

and current applications

Pezeshki S.M.S.1, Ghasemzadeh M.1, Hosseini E.1


1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran


Abstract
Background and Objectives
In the 80s, cord blood stem cells were used for the first time to treat diseases in humans, and contrary to the opinion of the opponents of using this new cell source, the result was satisfactory, and since then, cord blood has been an important source for cell therapy in humans. Considering the dominant approach to increase the clinical use of umbilical cord blood and the expansion of experimental and research studies in this field, this review article has discussed the current applications and future perspectives while examining the biology of cord blood stem cells.

Materials and Methods
To conduct this review, the key words “cell bank, umbilical cord blood, Wharton's jelly, stem cell and mesenchymal stem cell” were searched in PubMed and Google scholar databases in the period from 1990 to 2022.

Results
Cord blood cells have significant biological differences compared to other sources (bone marrow and peripheral blood).The absolute number of lymphocytes in cord blood is higher than the peripheral blood and the relative number of natural killer cells in cord blood is higher. Also, cells derived from umbilical cord blood have longer telomeres and more self-renewal capacity than peripheral blood and bone marrow, which makes them very potent.

Conclusions 
This source is of interest not only because of its high immunomodulatory properties in the treatment of inflammatory, autoimmune and systemic diseases, but also because of its anti-inflammatory properties, high differentiation ability and high proliferation capacity, as an ideal option for cell therapy in diseases in addition to hematological disorders. In addition, the preparation, processing, maintenance and storage of cells derived from umbilical cord blood are easy and inexpensive, which is an important point for treatment systems worldwide.

Key words: Mesenchymal Stem Cells, Stem Cells, Umbilical Cord, Wharton Jelly






Received:   5  Sep 2023
Accepted: 28 Oct 2023



Correspondence: Hosseini E., PhD in Hematology. Professor of Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine.
P.O.Box: 14665-1157, Tehran, Iran. Tel: (+9821) 88699531; Fax: (+9821) 88699531
E-mail:
1- Acridine Orange
1- Biological safety cabinet
Thioglycolate
1- Acridine Orange
1- Biological safety cabinet
1- Platelet Concentrate
2- Food and Drug Administration
3- Normal Skin Flora
4- Platelet Rich Plasma-Platelet Concentrate
5- Eosin-Methylene blue
6- Thioglycolate
e.hosseini10@yahoo.com.au



References:
  1. Agius CM, Blundell R. The cutting edge in stem cell medical applications. Research Journal of Medical Sciences 2008; 2(1): 47-50.
  2. Azzopardi JI, Blundell R. Umbilical cord stem cells. Stem Cell Discovery 2018; 8: 1-11.
  3. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant 2015; 24(3): 339-47.
  4. Rocha V, Wagner JE, Jr., Sobocinski KA, Klein JP, Zhang MJ, Horowitz MM, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 2000; 342(25): 1846-54.
  5. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev 2006; 2(2): 155-62.
  6. Gonzalez-Ryan L, Van Syckle K, Coyne KD, Glover N. Umbilical cord blood banking: procedural and ethical concerns for this new birth option. Pediatr Nurs 2000; 26(1): 105-10.
  7. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, et al. Human umbilical cord blood as  a  potential  source  of  transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 1989; 86(10): 3828-32.
  8. Mayani H, Wagner JE, Broxmeyer HE. Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplant 2020; 55(1): 48-61.
  9. Zhu X, Tang B, Sun Z. Umbilical cord blood transplantation: Still growing and improving. Stem Cells Transl Med 2021; 10 Suppl 2(Suppl 2): S62-s74.
  10. Knudtzon S. In vitro growth of granulocytic colonies from   circulating   cells   in    human cord blood. Blood 1974; 43(3): 357-61.
  11. Leary AG, Ogawa M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood 1987; 69(3): 953-6.
  12. Clin INakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J nvest 1982; 70(6): 1324-8.
  13. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321(17): 1174-8. 
  14. Mayani H,  Lansdorp  PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells (Dayton, Ohio) 1998; 16(3): 153-65.
  15. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 1996; 335(3): 157-66.
  16.            Laporte JP, Gorin NC, Rubinstein P, Lesage S, Portnoi MF, Barbu V, et al. Cord-blood transplantation from an unrelated donor in an adult with chronic myelogenous leukemia. N Engl J Med 1996; 335(3): 167-70.
  17. Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood 1993; 81(7): 1679-90.
  18. Brown JA, Boussiotis VA. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol (Orlando, Fla) 2008; 127(3): 286-97.
  19. da Silva CL, Gonçalves R, Porada CD, Ascensão JL, Zanjani ED, Cabral JM, et al. Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics. J Cell Physiol 2009; 220(1): 102-11.
  20. Theunissen K, Verfaillie CM. A multifactorial analysis of umbilical cord blood, adult bone marrow and mobilized peripheral blood progenitors using the improved ML-IC assay. Exp Hematol 2005; 33(2): 165-72.
  21.            Mayani H. Biological differences between neonatal and adult human hematopoietic stem/progenitor cells. Stem Cells Dev 2010; 19(3): 285-98.
  22.            Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117(3): 1061-70.     
  23.  Brunstein CG, Miller JS, McKenna DH, Hippen KL, DeFor TE, Sumstad D, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 2016; 127(8): 1044-51.
  24. Tolar J, Hippen KL, Blazar BR. Immune regulatory cells in umbilical cord blood: T regulatory cells and mesenchymal stromal cells. Br J Haematol 2009; 147(2): 200-6.
  25. Seay HR, Putnam AL, Cserny J, Posgai AL, Rosenau EH, Wingard JR, et al. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant   Autologous     Adoptive      Cell    Transfer Therapy. Mol Ther Methods Clin Dev 2017; 4: 178-91.
  26. Yun HD, Varma A, Hussain MJ, Nathan S, Brunstein C. Clinical Relevance of Immunobiology in Umbilical Cord Blood Transplantation. J Clin Med 2019; 8(11): 1968. 
  27. Ghasemzadeh M, Hosseini E, Ahmadi M, Kamalizad M, Amirizadeh N. Comparable osteogenic capacity of mesenchymal stem or stromal cells derived from human amnion membrane and bone marrow. Cytotechnology 2018; 70(2): 729-39.
  28. Ghasemzadeh M, Hosseini E, Schwarer AP, Pourfathollah AA. NK cell maturation to CD56(dim) subset associated with high levels of NCRs overrides the inhibitory effect of NKG2A and recovers impaired NK cell cytolytic potential after allogeneic hematopoietic stem cell transplantation. Leuk Res 2016; 43: 58-65.
  29. Hosseini E,  Ghasemzadeh M, Kamalizad M, Schwarer AP.  Ex vivo  expansion  of  CD3(depleted) cord blood-MNCs in the presence of bone marrow stromal cells; an appropriate strategy to provide functional NK cells applicable for cellular therapy. Stem Cell Res 2017; 19: 148-55.
  30. Hiwarkar P, Qasim W, Ricciardelli I, Gilmour K, Quezada S, Saudemont A, et al. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells. Blood 2015; 126(26): 2882-91.
  31. Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105(2): 750-8.
  32. Torelli GF, Maggio R, Peragine N, Chiaretti S, De Propris MS, Lucarelli B, et al. Functional analysis and gene expression profile of umbilical cord blood regulatory T cells. Ann Hematol 2012; 91(2): 155-61.
  33. Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-Blood Transplantation in Patients with Minimal Residual Disease. N Engl J Med. 2016; 375(22): 2204-5.             
  34. Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum  Immunol 2022; 83(1): 86-98.
  35. Laroye C, Boufenzer A, Jolly L, Cunat L, Alauzet C, Merlin JL, et al. Bone marrow vs Wharton's jelly mesenchymal stem cells in experimental sepsis: a comparative study. Stem Cell Res Ther 2019; 10(1): 192.
  36. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9: 12.
  37. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33(6): 919-26.
  38. Vieira Paladino F, de Moraes Rodrigues J, da Silva A, Goldberg AC. The Immunomodulatory Potential of Wharton's Jelly Mesenchymal Stem/Stromal Cells. Stem Cells Int 2019; 2019: 3548917. 
  39.  Weiss  ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem cells (Dayton, Ohio). 2008;26(11):2865-74.
  40. Karaöz E, Çetinalp Demircan P, Erman G, Güngörürler E, Eker Sarıboyacı A. Comparative Analyses of Immunosuppressive Characteristics of Bone-Marrow, Wharton's Jelly, and Adipose Tissue-Derived Human Mesenchymal   Stem     Cells.    Turk J Haematol 2017; 34(3): 213-25.
  41. Barrett AN, Fong CY, Subramanian A, Liu W, Feng Y, Choolani M, et al. Human Wharton's Jelly Mesenchymal Stem Cells Show Unique Gene Expression Compared with Bone Marrow Mesenchymal  Stem  Cells   Using    Single-Cell RNA-Sequencing. Stem Cells Dev 2019; 28(3): 196-211.
  42. Kamal   MM,   Kassem   DH. Therapeutic   Potential of Wharton's Jelly Mesenchymal Stem Cells for Diabetes: Achievements  and  Challenges.   Front   Cell  Dev Biol 2020; 8: 16.
  43. Gao LR, Zhang NK, Zhang Y, Chen Y, Wang L, Zhu Y, et al. Overexpression of apelin in Wharton' jelly mesenchymal stem cell reverses insulin resistance and promotes pancreatic β cell proliferation in type 2 diabetic rats. Stem Cell Res Ther 2018; 9(1): 339.
  44. Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 2018; 8(1): 169-84.
  45. Parazzi V, Lavazza C, Boldrin V, Montelatici E, Pallotti F, Marconi M, et al. Extensive Characterization of Platelet Gel Releasate From Cord Blood in Regenerative Medicine. Cell Transplant 2015; 24(12): 2573-84.
  46. Orlando N, Pellegrino C, Valentini CG, Bianchi M, Barbagallo O, Sparnacci S, et al. Umbilical cord blood: Current uses for transfusion and regenerative medicine. Transfus Aphere Sci 2020; 59(5): 102952.
  47. Ilic D, Miere C, Lazic E. Umbilical cord blood stem cells: clinical trials in non-hematological disorders. Br Med Bull 2012; 102: 43-57.
  48. Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, et al. Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 2009; 280(1): 31-7.
  49. Gauthaman K, Fong CY, Arularasu S, Subramanian A, Biswas A, Choolani M, et al. Human Wharton's jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. J Cell Biochem 2013; 114(2): 366-77.
  50. Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 2015; 15(9): 1293-306.
  51. Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol 2012; 11(4): 369-80.
  52. Mora-Lee S, Sirerol-Piquer MS, Gutiérrez-Pérez M, Gomez-Pinedo U, Roobrouck VD, López T, et al. Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice. PloS One 2012; 7(8): e43683.
  53. Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, et al. Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain 2012; 135(Pt 2): 431-46.
  54. Hou ZL, Liu Y, Mao XH, Wei CY, Meng MY, Liu YH, et al. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh Migr 2013; 7(5): 404-7.
  55. Li JF, Zhang DJ, Geng T, Chen L, Huang H, Yin HL, et al. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant 2014; 23 Suppl 1: S113-22.
  56. Liang J, Zhang H, Hua B, Wang H, Wang J, Han Z, et al. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler 2009; 15(5): 644-6.
  57. Cheng L, Wang S, Peng C, Zou X, Yang C, Mei H, et al. Human umbilical cord mesenchymal stem cells for psoriasis: a phase 1/2a, single-arm study. Signal Transduct Target Ther 2022; 7(1): 263.
  58. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
  59. Wu KH, Chan CK, Tsai C, Chang YH, Sieber M, Chiu TH, et al. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 2011; 91(12): 1412-6.
  60. Ziaei M, Zhang J, Patel DV, McGhee CNJ. Umbilical cord stem cells in the treatment of corneal disease. Surv Ophthalmol 2017; 62(6): 803-15.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pezeshki S, Ghasemzadeh M, Hosseini E. Cord blood stem cells: an overview of biology and current applications. Sci J Iran Blood Transfus Organ 2023; 20 (4) :335-345
URL: http://bloodjournal.ir/article-1-1509-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 20, Issue 4 (Winter 2023) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.22 seconds with 39 queries by YEKTAWEB 4645