[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 15, Issue 4 (Winter 2018) ::
Sci J Iran Blood Transfus Organ 2018, 15(4): 272-286 Back to browse issues page
Effect of synthetic biologically activated 45S5 glass nanoparticles on osteogenesis differentiation of mesenchymal human bone marrow
M. Shamsi , A. Salimi , M. Ghallasi , R. Halabian
Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran.
Keywords: Key words: Nanoparticles, Mesenchymal Stem Cells, Glass
Full-Text [PDF 929 kb]   (2172 Downloads)     |   Abstract (HTML)  (3518 Views)
Type of Study: Research | Subject: Stem cells
Published: 2019/01/5
Full-Text:   (3526 Views)
References:
  1. Amani M, Amirizadeh N, Soleimani M, Malekan H, Habibi M, Bashtar M. Effect of platelet growth factors gel on proliferation and differentiation of mesenchymal stem cells. Sci J Iran Blood Transfus Organ 2009; 6(2):71-83. [Article in Farsi]
  2. Nabian N, Jahanshahi M, Rabiee SM. Synthesis of nano bioactive glass-ceramic powders and it’s in vitro bioactivity study in bovine serum albumin protein. J Mol Struct 2011; 998(1-3): 37-41.
  3. Kokubo T, Takadama  H. How useful is SBF in predicting in vivo bone bioactivity?  Biomaterials 2006; 27(15): 2907-15.
  4. Chevalier  J  and Gremillard  L. Ceramics for medical application: A picture for the next 20 years.  J Eur Ceram 2009; 29: 1245-55.
  5. Hench LL. The Story of  Bioglass. J Mater Sci Mater Med 2006; 17(11): 967-78.
  6. Sohrabi M,  Hesaraki S,  Kazemzadeh A and Alizadeh M. The influence of sol-gel processing method on physical properties and acellular in vitro reactivity of bioactive glasses based on CaO-SiO2-P2O5: acidic catalyzed single step process versus acid- base two step quick-gelling method. Journal of Advanced Materials and Technologies 2013; 2(3): 31-6. [Article in Farsi]
 
 
 
 
 
 
 
  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials.  J Biomedical Materials Research Banner 1971; 5: 117-41.
  2. Mohammadi Y, Mirzadeh H, Moztarzadeh F, Soleimani M, Jabbari E. Osteogenic differentiation of mesenchymal stem cells on novel three-dimensional poly (L-lactic acid)/chitosan/gelatin/β-tricalcium phosphate hybrid scaffolds. Iranian Polymer Journal 2007; 19(1): 57-69.
  3. Risbud MV, Shapiro IM, Guttapalli A, Di Martino A, Danielson KG, Beiner JM, et al. Osteogenic potential of adult human stem cells of the lumbar vertebral body and the iliac crest. Spine (Phila Pa 1976) 2006; 31(1): 83-9.
  4. Yue WM, Liu W, Bi YW, He XP, Sun WY, Pang XY, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev 2008; 17(4): 785-93.
  5. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 2009;
58(4): 570-81.
  1. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation and application in cell therapy. Mol Med 2004; 8(3): 301-16.
  2. Grinnemo KH, Mansson A, Dellgren G, Klingberg DWardell EDrvota Vet al. Xenoreactivity and engrafment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg 2004; 127(5): 1293-300.
  3. Alonso-Goulart V, Ferreira LB, Duarte CA, Lemos de Lima I, Ferreira ER, et al. Mesenchymal stem cells from human adipose tissue and bone repair: a literature review. Biotechnology Research and Innovation. Available online 14 Nov 2017.
  4. Markarian CF, Frey GZ, Silveira MD,  Chem EMMilani AREly PB, et al. Isolation of adipose-derived stem cells: A comparison among different methods. Biotechnol Lett 2014; 36(4): 693-702.
  5. Ahearne M, Lysaght J, Lynch AP. Combined influence of basal media and fibroblast growth factor on the expansion and differentiation capabilities of adipose-derived stem cells. Cell Regen (Lond) 2014; 3(1): 13.
  6. Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and B-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2013; 4(5): 117.
  7. Langenbach F, Naujoks C, Smeets R, Berr K, Depprich R, Kubler  N,  et al. Scaffold-free microtissues: Differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Invest 2013; 17(1): 9-17.
  8. Hellmich C, Ulm FJ. Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1-10um scale. Biomechanic Model Mechanobiol 2003; 2(1): 21-36.
  9. Gerstenfeld L, Barnes G, Shea C, Einhorn T. Osteogenic differentiation is selectively promoted by morphologenetic signals from chondrocytes and synergized by a nutrient rich growth envrironment. Connect Tissue Res 2003; 44 Suppl 1: 85-91.
  10. Li Z,  Khun NW,  Tang  XZ,  Liu E,  Khor KA. Mechanical, tribological and biological properties of novel 45S5 Bioglasss composites reinforced with in situ reduced graphene oxide. J Mech Behav Biomed Mater 2017; 65: 77-89.
  11. Jurczyk  K, Jurczyk  M, Niespodziana K. Synthesis and characterization of titanium-45S5 Bioglass nanocomposite. Materials and Design 2011; 32: 2554-60.
  12. Stulajterova R, Medvecky  L, Giretova M, Sopcak T, Kovalcikova A. Effect of bioglass 45S5 addition on properties, microstructure and cellular response of tetracalcium phosphate/monetite cements.  Materials Characterization 2017; 126: 104-15.
  13. Leenakul  W, Tunkasiri T, Tongsiri N, Pengpat  K, Ruangsuriya  J. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica. Mater Sci Eng C  Mater Biol Appl 2016; 61: 695-704.
  14. Qian J, Kang Y, Wei Z, Zhang W. Fabrication and characterization of biomorphic 45S5 bioglass scaffold from sugarcane. Materials Science and Engineering C  2009; 29: 1361-4.
  15. Farnoush H, Muhaffel F, Cimenoglu H. Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates. Applied Surface Science 2015; 324: 765-74.
  16. Romeis S, Hoppe A, Detsch  R, Boccaccini AR,  Schmidt J, Peukert W. Top-down processing of submicron 45S5 Bioglass® for enhanced in vitro bioactivity and biocompatibility. Procedia Engineering 2015; 102: 534-41.
  17. Kargozar S, Baino F, Lotfibakhshaiesh N, Hill  RG, Milane  PB, Hamzehlou S, et al. When size matters: Biological response to strontium- and cobaltsubstituted bioactive glass particles. Materials Today: Proceedings 2018; 5: 15768-75.
  18. Kokubo T, Hiroaki T. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27: 2907-15.
  19. Cheng  D, Xie  R, Tang T,  Jia  X, Cai  Q, Yang  X. Regulating micro-structure and biomineralization of electrospun PVP-based hybridized carbon nanofibers containing bioglass nanoparticles via aging time.  RSC Adv  2016; 6: 3870-81.
  20. Himanshu T, Singh SP, Sampath KA, Prerna M, Ashish J. Studies on Preparation and Characterization of 45S5 Bioactive GlassDoped with (TiO2 + ZrO2) as Bioactive Ceramic Material.  Bioceram Dev Appl 2016; 6(1): 1-7.
  21. Theodorou  G, Goudouri  OM, Kontonasaki  E, Chatzistavrou  X, Papadopoulou L, Kantiranis N, et al. Comparative Bioactivity Study of 45S5 and 58S Bioglasses in Organic and Inorganic Environment.  Bioceram DevAppl 2011; 1: 31-5.
  22. Chatzistavrou X, Zorba T, Chrissafis K, Kaimakamis G, Kontonasaki E, Koidis P,  et al. Influence of particle size on the crystallization process and the bioactive behavior of a bioactive glass system. J Thermal Analysis and Calorimetry 2006; 85: 253-9.
  23. Kokubo T, Institute of Materials, Minerals, and Mining.Nihon Medikaru Materiaru Kabushiki Kaisha. Bioceramics and their Clinical Applications. England : CRC Press; 2008. p. 120-8.
  24. Li N,  Jie Q,  Zhu S, Wang  R. A New Route to Prepare Macroporous Bioactive Sol Gel Glasse with High Mechanical Strength. Materials Letter 2004; 58(22-23): 2747-50.
  25. Vissers  CAB,  Harvestine  JN, Leach  JK. Pore size regulates mesenchymal stem cell response to Bioglass-loaded composite scaffolds. J Mater  Chem B  2015; 3: 8650-8.
  26. Kokubo T, Kushitani  H,  Sakka  S,  Kitsugi T, Yamamuro  T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed Mater Res 1990; 24: 721-34.
  27. Seeman E,  Devogelaer  JP,  Lorenc R, Spector T, Brixen K, Balogh A, et al. Strontium Ranelate Reduces the Risk of Vertebral Fractures in Patients With Osteopenia.  J Bone Miner Res 2008; 23: 433-8.
  28. Panzavolta S, Torricelli P, Sturba L, Bracci B, Giardino R.  Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone
cements. J  Biomed Mater Res A 2008; 84: 965-72.
  1. Pietak AM, Reid  JW, Stott  MJ, Sayer M  .Silicon substitution in the calcium phosphate bioceramics. Biomaterials 2007; 28: 4023-32.
  2. Phan  PV, Grzanna M, Chu J, Polotsky A, El-Ghannam A, Heerden DV, et al. The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro.  J Biomed Mater Res A 2003; 67: 1001-8.
  3. Komori T. Regulation of bone development and maintenance by Runx2. Front Biosci 2008; 13: 898-90.
  4. Sundaramurthi  D,  Jaidev  L, Ramana  LN, Sethuraman  S, Krishnan  UM.  Osteogenic
    differentiation of stem cells on mesoporous silica nanofibers.  RS  Adv  2015; 5: 69205-14.
  5. Shin  H, Zygourakis  K, Farach-Carson  MC, Yaszemski  MJ, Mikos AG.  Modulation of differentiation and mineralization of marrow stromal cell  cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides.  J  Biomed  Mater Res  A 2004; 69: 535-43.
  6. Shahrousvand  M, Mir Mohamad Sadeghi G, Shahrousvand E, Ghollasi M, Salimi A. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf B Biointerfaces 2017; 156: 292-304.
 
 
 
 


 
 
 
 
Sci J Iran Blood Transfus Organ 2019; 15(4): 272-286
Original Article
 

 

Effect of synthetic biologically activated 45S5 glass nanoparticles on osteogenesis differentiation
of mesenchymal human bone marrow
 
Shams M.1, Salimi A.2, Ghollasi M.3, Halabian R.4
 
 
1Institute of Materials and Energy(MERC), Karaj, Iran
2Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
3Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
4Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
 
 
Abstract
Background and Objectives
Glasses and glass-ceramics are a group of biological substances that form hydroxyapatite against a simulated solution of the body and can be used in many clinical cases that require the production and repair of bone. The purpose of this study was to create a 45S5 bioactive glass nanoparticle and evaluate its impact on staining and differentiation of mesenchymal stem cells into bone cells.
 
Materials and Methods
In this experimental research, the nanocomposite of the bioaccuminant 45S5 was synthesized by the fusion method and planetary mill was converted to the nanoscale structure; then, its physicochemical and structural properties were investigated. The bioactivity was evaluated using a simulated body solution. The growth, amplification and differentiation of mesenchymal stem cells in the vicinity of nanoparticles were investigated.
 
Results
Biomedical evaluation indicated the formation of hydroxyapatite on nanoparticles after zinc immersion in the body was simulated. Cell experiments also confirmed the lack of toxicity of the glass nanoparticles and its stimulating effect for the growth, proliferation and differentiation of mesenchymal cells in bone cells. In the bone differentiation, the activity of alkaline phosphatase in the glass nanoparticle was expressed after 14 days of differentiation (0.55 ± 0.07), while it was the control sample (0.15 ± 0.03).
 
Conclusions 
According to the progenies, mesenchymal stem cells can propagate and grow on the nanoparticles of the synthesized bioactive glass and, in addition to not being toxic, stimulate and stimulate cell growth.
 
Key words: Nanoparticles, Mesenchymal Stem Cells, Glass
 
 
Received:  4 Jul  2018
Accepted: 2 Sep 2018
 
 

Correspondence: Halabian R., PhD in Medical Biotechnology. Assistant professor of Faculty of Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sieances.
P.O.Box: 14359-44711, Tehran, Iran. Tel: (+9821) 86072709 ; Fax: (+9821) 86072709
E-mail:
r.halabian@yahoo.com
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shamsi M, Salimi A, Ghallasi M, Halabian R. Effect of synthetic biologically activated 45S5 glass nanoparticles on osteogenesis differentiation of mesenchymal human bone marrow. Sci J Iran Blood Transfus Organ 2018; 15 (4) :272-286
URL: http://bloodjournal.ir/article-1-1209-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 15, Issue 4 (Winter 2018) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4645