1. Cornero SG, Maegele M, Lefering R, Abbati C, Gupta S, Sammartano F, et al. predictive factors for massive transfusion in trauma: a novel clinical score from an Italian trauma center and German trauma registry. J Clin Med 2020; 9(10): 3235. [
DOI:10.3390/jcm9103235] [
PMID] [
]
2. Rossaint R, Afshari A, Bouillon B, Cerny V, Cimpoesu D, Curry N, et al. The European guideline on management of major bleeding and coagulopathy following trauma. Crit Care 2023; 27(1): 80. [
DOI:10.1186/s13054-023-04327-7] [
PMID] [
]
3. Cantle PM, Cotton BA. Prediction of massive transfusion in trauma. Crit Care Clin 2017; 33(1): 71-84. [
DOI:10.1016/j.ccc.2016.08.002] [
PMID]
4. Saviano A, Perotti C, Zanza C, Longhitano Y, Ojetti V, Franceschi F, et al. Blood Transfusion for Major Trauma in Emergency Department. Diagnostics 2024; 14(7): 708. [
DOI:10.3390/diagnostics14070708] [
PMID] [
]
5. White NJ, Ward KR, Pati S, Strandenes G, Cap AP. Hemorrhagic blood failure: oxygen debt, coagulopathy, and endothelial damage. J Trauma Acute Care Surg 2017; 82(6S): S41-S49. [
DOI:10.1097/TA.0000000000001436] [
PMID] [
]
6. Miri-Moghaddam E, Bizhaem SK, Moezzifar Z, Salmani F. Long-term prediction of Iranian bloodproduct supply using LSTM: a 5-year forecast. BMC Med Inform Decis Mak 2024; 24(1): 213. [
DOI:10.1186/s12911-024-02614-z] [
PMID] [
]
7. Nandi AK, Roberts DJ, Nandi AK. Prediction paradigm involving time series applied to total blood issues data from England. Transfusion 2020; 60 (3): 535-543. [
DOI:10.1111/trf.15705] [
PMID] [
]
8. Hanna M, Knittel J, Gillihan J. The use of whole blood transfusion in trauma. Curr Anesthesiol Rep 2022; 12(2): 234-9. [
DOI:10.1007/s40140-021-00514-w] [
PMID] [
]
9. Kasraian L, Naderi N, Hosseini M, Taheri Akerdi A, Paydar S, Abdolrahimzadeh Fard H. A novel scoring system for early prediction of massive transfusion requirement in trauma patients. Intern Emerg Med 2024; 19(5): 1431-8.
https://doi.org/10.1007/s11739-024-03541-7 [
DOI:10.1007/s11739-024-03650-3] [
PMID]
10. Rafieemehr H, Golparian M, Jiriaei Sharahi N, Vaseie M, Salimi R. The rate of blood products transfusion in the treatment ofpatients with acute trauma referred to Besat Hospital in Hamadan in 2018-2019. Sci J Iran Blood Transfus Organ 2022; 19(4): 270-83. [Article in Farsi]
11. Drackley A, Newbold KB, Paez A, Heddle N. Forecasting Ontario's blood supply and demand. Transfusion 2012; 52(2): 366-74. [
DOI:10.1111/j.1537-2995.2011.03280.x] [
PMID]
12. Crowe E, DeSantis SM, Bonnette A, Jansen JO, Yamal JM, Holcomb JB, et al. Whole blood transfusion versus component therapy in trauma resuscitation: a systematic review and meta‐analysis. J Am Coll Emerg Physicians Open 2020; 1(4): 633-41. [
DOI:10.1002/emp2.12089] [
PMID] [
]
13. Lier H, Fries D. Emergency blood transfusion for trauma and perioperative resuscitation: standard of care. Transfus Med Hemother 2021; 48(6): 366-76. [
DOI:10.1159/000519696] [
PMID] [
]
14. Shackelford S, Yang S, Hu P, Miller C, Anazodo A, Galvagno S, et al. Predicting blood transfusion using automated analysis of pulse oximetry signals and laboratory values. J Trauma Acute Care Surg 2015; 79(4): S175-S80. [
DOI:10.1097/TA.0000000000000738] [
PMID]
15. Mishra S, Daga A, Gupta A. Inventory management practices in the blood bank of an institute of national importance in India. J Family Med Prim Care 2021; 10(12): 4489-92. [
DOI:10.4103/jfmpc.jfmpc_1000_21] [
PMID] [
]
16. Sarvestani SE, Hatam N, Seif M, Kasraian L, Lari FS, Bayati M. Forecasting blood demand for different blood groups in Shiraz using auto regressive integrated moving average (ARIMA) and artificial neural network (ANN) and a hybrid approaches. Scientific Reports. 2022 Dec 20;12(1): 22031. [
DOI:10.1038/s41598-022-26461-y] [
PMID] [
]
17. Maynard S, Farrington J, Alimam S, Evans H, Li K, Wong WK, et al. Machine learning in transfusion medicine: A scoping review. Transfusion 2024; 64(1): 162-84. [
DOI:10.1111/trf.17582] [
PMID] [
]
18. Khaldi R, El Afia A, Chiheb R. Artificial neural networks for blood demand forecasting. Transfus Med 2022; 32(4): 245-52.