[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 12, Issue 2 (Summer 2015) ::
Sci J Iran Blood Transfus Organ 2015, 12(2): 183-205 Back to browse issues page
Umbilical cord blood: stem cells and ex vivo expansion methods
F. Mohammadali , A. Atashi , M. Soleimani , S. Abroun , A.A. Pourfathollah , S. Kaviani , M. Ajami , M. Ajami
Keywords: Key words : Umbilical Cord Blood, Stem Cells, Cord Blood Stem Cell Transplantation
Full-Text [PDF 548 kb]   (4383 Downloads)     |   Abstract (HTML)  (10282 Views)
Type of Study: Review Article | Subject: Stem cells
Published: 2015/07/5
Full-Text:   (12165 Views)
References :  
  1. Mihu CM, Mihu D, Costin N, Rus Ciucă D, Suşman S, Ciortea R. Isolation and characterization of stem cells from the placenta and the umbilical cord. Rom J Morphol Embryol 2008; 49(4): 441-6.
  2. Laver JH, Hulsey TC, Jones JP, Gautreaux M, Barredo JC, Abboud MR. Assessment of barriers to bone marrow donation by unrelated African-American potential donors. Biol Blood Marrow Transplant 2001; 7(1): 45-8.
  3. Goessling W, Allen RS, Guan X, Jin P, Uchida N, Dovey M, et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 2011; 8(4): 445-58.
  4. Mayani H, Alvarado-Moreno JA, Flores-Guzmán P. Biology of human hematopoietic stem and progenitor cells present in circulation. Arch Med Res 2003; 34(6): 476-88.
  5. Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 1974; 43(3): 357-61.
  6. Leary AG, Ogawa M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood 1987; 69(3): 953-6.
 
  1. Gluckman E, Devergié A, Bourdeau-Esperou H, Thierry D, Traineau R, Auerbach A, et al. Transplantation of umbilical cord blood in Fanconi's anemia. Nouv Rev Fr Hematol 1990; 32(6): 423-5.
  2. National Cord Blood Program. Welcome to the New York Blood Center's National Cord Blood Program Website.Available from: http://www.nationalcordbloodprogram.org.
  3. Bone Marrow Donors Worldwide. Welcome to Bone Marrow Donors Worldwide. Leiden, Netherlands. Available from: http://www.bmdw.org/index.php?id=statistics_cordblood , 2014.
  4. Gluckman E. History of cord blood transplantation. Bone Marrow Transplant 2009; 44(10): 621-6.
  5. Rocha V, Broxmeyer HE. New approaches for improving engraftment after cord blood transplantation. Biol Blood Marrow Transplant 2010; 16(1 Suppl): S126-32.
  6. Ballen KK, Spitzer TR, Yeap BY, McAfee S, Dey BR, Attar E, et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant 2007; 13(1): 82-9.
  7. McGuckin  C,  Forraz  N,  Baradez  M-O,  Basford   C,
Dickinson AM, Navran S, et al. Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp (Wars) 2006; 66(4): 321-9.
  1. Pipes BL, Tsang T, Peng SX, Fiederlein R, Graham M, Harris DT. Telomere length changes after umbilical cord blood transplant. Transfusion 2006; 46(6): 1038-43.
  2. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 1989; 86(10): 3828-32.
  3. Rabian-Herzog C,  Lesage  S, Gluckman E, Charron D.
 
Characterization of lymphocyte subpopulations in cord blood. J Hematother 1993; 2(2): 255-7.
  1. Bofill M, Akbar AN, Salmon M, Robinson M, Burford G, Janossy G. Immature CD45RA(low)RO(low) T cells in the human cord blood. I. Antecedents of CD45RA+ unprimed T cells. J Immunol 1994; 152(12): 5613-23.
  2. Risdon G, Gaddy J, Stehman FB, Broxmeyer HE. Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol 1994; 154(1): 14-24.
  3. Cohen SB, Madrigal JA. Immunological and functional differences between cord and peripheral blood. Bone Marrow Transplant 1998; 21 Suppl 3: S9-12.
  4. MacMillan ML, Weisdorf DJ, Brunstein CG, Cao Q, DeFor TE, Verneris MR, et al. Acute graft-versus-host disease after unrelated donor umbilical cord blood transplantation: analysis of risk factors. Blood 2009; 113(11): 2410-5
  5. Barker JN, Davies SM, DeFor T, Ramsay NK, Weisdorf DJ, Wagner JE. Survival after transplantation of unrelated donor umbilical cord blood is comparable to that of human leukocyte antigen–matched unrelated donor bone marrow: results of a matched-pair analysis. Blood 2001; 97(10): 2957-61.
  6. Rocha V, Wagner Jr JE, Sobocinski KA, Klein JP, Zhang M-J, Horowitz MM, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med 2000; 342(25): 1846-54.
  7. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med 2004; 351(22): 2276-85.
  8. Leung AY, Kwong YL. Haematopoietic stem cell transplantation: current concepts and novel therapeutic strategies. Br Med Bull 2010; 93: 85-103.
  9. Petersdorf  EW. Optimal HLA matching in hematopoietic cell transplantation. Curr Opin Immunol 2008; 20(5): 588-93.
  10. Shaw BE, Arguello R, Garcia-Sepulveda CA, Madrigal JA. The impact of HLA genotyping on survival following unrelated donor haematopoietic stem cell transplantation. Br J Haematol 2010; 150(3): 251-8.
  11. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007; 110(13): 4576-83.
  12. Fleischhauer K, Shaw  BE, Gooley T, Malkki M, Bardy P,  Bignon JD, et al. Effect of T-cell epitope matching at HLA-DPB1 in recipients of unrelated-donor haematopoietic-cell-transplantation: a retrospective study. Lancet Oncol 2012; 13(4): 366-74.
  13. Bettens  F, Passweg J, Schanz  U, Chalandon Y, Heim D, Güngör T, et al. Impact of HLA-DPB1 haplotypes on outcome of 10/10 matched unrelated hematopoietic stem cell donor transplantation depends on MHC-linked microsatellite polymorphisms. Biol Blood Marrow Transplant 2012;18(4): 608-16.
  14. D'Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 1998; 83(3): 197-203.
  15. Behzad-Behbahani A, Pouransari R, Tabei S, Rahiminejad M, Robati M, Yaghobi R, et al. Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation. Transplant Proc 2005; 37(7): 3211-2.
  16. Gammaitoni L, Weisel KC, Gunetti M, Wu KD, Bruno S, Pinelli S, et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 2004; 103(12): 4440-8.
  17. Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang M-J, Champlin RE, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. New Engl J Med 2004; 351(22): 2265-75.
  18. Gilmore GL, DePasquale DK, Lister J, Shadduck RK. Ex vivo expansion of human umbilical cord blood and peripheral blood CD34(+) hematopoietic stem cells. Exp Hematol 2000; 28(11): 1297-305.
  19. Stevens CE, Scaradavou A, Carrier C, Carpenter C, Rubinstein P. An empirical analysis of the probability of finding a well-matched cord blood (CB) unit: implications for a National Cord Blood Inventory. Blood 2005; 106. [Abstract 2047]
  20. Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 2002; 100(5): 1611-8.
  21. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 1997; 337(6): 373-81.
  22. Migliaccio AR, Adamson JW, Stevens CE, Dobrila NL, Carrier CM, Rubinstein P. Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor  than  nucleated  cell  quantity.   Blood  2000;
96(8): 2717-22.
  1. Petropoulou A, Rocha V. Risk factors and options to improve engraftment in unrelated cord blood transplantation. Stem cells Int 2011; 2011: 610514.
  2. Bart T. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells. Clinicoecon Outcomes Res 2010; 2: 141-7.
  3. Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood 1993; 81(7): 1679-90.
  4. Bertolini F, Lazzari L, Lauri E, Corsini C, Castelli C, Gorini F, et al. Comparative study of different procedures for the collection and banking of umbilical cord blood. J Hematother 1995; 4(1): 29-36.
  5. Harris DT, Schumacher MJ, Rychlik S, Booth A, Acevedo A, Rubinstein P, et al. Collection, separation and cryopreservation of umbilical cord blood for use in transplantation. Bone Marrow Transplant 1994; 13(2): 135-43.
  6. Ballen KK. New trends in umbilical cord blood transplantation. Blood 2005; 105(10): 3786-92.
  7. Hollands P, McCauley C. Private cord blood banking: current use and clinical future. Stem Cell Rev 2009; 5(3): 195-203.
  8. Badowski MS, Harris DT. Collection, processing, and banking of umbilical cord blood stem cells for clinical use in transplantation and regenerative medicine. Methods Mol Biol 2008; 39(3): 173-8.
  9. Migliaccio G, Migliaccio AR, Druzin ML, Giardina P, Zsebo KM, Adamson JW. Long-term generation of colony-forming cells in liquid culture of CD34+ cord blood cells in the presence of recombinant human stem cell factor. Blood 1992; 79(10): 2620-7.
  10. Bertolini F, Lazzari L, Lauri E, Corsini C, Castelli C, Gorini F, et al. Comparative study of different procedures for the collection and banking of umbilical cord blood. J Hematother 1995; 4(1): 29-36.
  11. Harris D, Schumacher M, Rychlik S, Booth A, Acevedo A, Rubinstein P, et al. Collection, separation and cryopreservation of umbilical cord blood for use in transplantation. Bone Marrow Transplant 1994; 13(2): 135-43.
  12. Almici C, Carlo-Stella C, Mangoni L, Garau D, Cottafavi L, Rizzoli V, et al. Density separation of umbilical cord blood and recovery of hemopoietic progenitor cells: implications for cord blood banking. Stem Cells 1995; 13(5): 533-40.
  13. Butler MG, Menitove JE. Umbilical cord blood banking: an update. J Assist Reprod Genet 2011; 28(8): 669-76.
  14. Garcia J. Allogeneic unrelated cord blood banking worldwide: an update. Transfus Apher Sci 2010; 42(3): 257-63.
  15. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ. Cryopreservation of hematopoietic stem cells. Am J Hematol 2007; 82(6): 463-72.
  16. Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Nat Acad Sci U S A 2003; 100(2): 645-50.
  17. Shlebak A, Marley S, Roberts I, Davidson R, Goldman J, Gordon M. Optimal timing for processing and cryopreservation of umbilical cord haematopoietic stem cells for clinical transplantation. Bone Marrow Transplant 1999; 23(2): 131-6.
  18. Choi CW, Kim BS, Seo JH, Shin SW, Kim YH, Kim JS. Long-term engraftment stability of peripheral blood stem cells cryopreserved using the dump-freezing method in a-80 C mechanical freezer with 10% dimethyl sulfoxide. Int J Hematol 2001; 73(2): 245-50.
  19. Abrahamsen JF, Bakken AM, Bruserud Ø. Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion 2002; 42(12): 1573-80.
  20. Galmés  A,  Besalduch J, Bargay J, Novo A, Morey M,
Guerra JM, et al. Long-term storage at-80 degrees C of hematopoietic progenitor cells with 5-percent dimethyl sulfoxide as the sole cryoprotectant. Transfusion 1999; 39(1): 70-3.
  1. Halle P, Tournilhac O, Knopinska-Posluszny W, Kanold J, Gembara P, Boiret N, et al. Uncontrolled-rate freezing and storage at–80 degrees C, with only3. 5-percent DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion 2001; 41(5): 667-73.
  2. Moezzi L, Pourfathollah A, Alimoghaddam K, Soleimani M,  Ardjmand AR. The effect of cryopreservation on clonogenic capacity and in vitro expansion potential of umbilical cord blood progenitor cells. Transplant Proc 2005; 37(10): 4500-3.
  3. Harris DT, Mapother M, Goodman C. Prevention of cross-sample and infectious contamination during cord blood banking by use of cryovials for storage in liquid nitrogen. Transfusion 2000; 40: 111S
  4. Broxmeyer HE. Umbilical cord transplantation: Epilogue. Semin Hematol 2010; 47(1): 97-103.
  5. Soufizomorrod M, Soleimani M, Hajifathali A, Mohammadi MM, Abroun S. Expansion of CD133+ umbilical cord blood derived hematopoietic stem cells on biocompatible microwells. Int J Hematol Oncol Stem Cell Res 2013; 7(1): 9-14.
  6. Fallah P, Arefian E, Naderi M, Aghaee-Bakhtiari SH, Atashi A, Ahmadi K, et al. miR-146a and miR-150 promote the differentiation of CD133+ cells into T-lymphoid lineage. Mol Biol Rep 2013; 40(8): 4713-9.
  7. Hafizi M, Atashi A, Bakhshandeh B, Kabiri M, Nadri S, Hosseini RH, et al. MicroRNAs as markers for neurally committed CD133+/CD34+ stem cells derived from human umbilical cord blood. Biochem Genet 2013; 51(3-4): 175-88.
  8. Kouhkan F, Soleimani M, Daliri M, Behmanesh M, Mobarra N, Mossahebi Mohammadi M, et al. miR-451 Up-regulation, Induce Erythroid Differentiation of CD133+cells Independent of Cytokine Cocktails. Iran J Basic Med Sci 2013; 16(6): 756-63.
  9. Hatzfeld J, Batard P, Cardoso A, Li M, Panterne B, Sansilvestri P, et al. Purification and release from quiescence of umbilical cord blood early progenitors reveal their potential to engraft adults. Blood Cells 1994; 20(2-3): 430-4.
  10. Van Epps D, Bender J, Lee W, Schilling M, Smith A, Smith S, et al. Harvesting, characterization, and culture of CD34+ cells from human bone marrow, peripheral blood , and  cord  blood.  Blood  Cells  1994;   20(2-3):
411-23.
  1. Lu L, Xiao M, Shen RN, Grigsby S, Broxmeyer HE. Enrichment, characterization, and responsiveness of single primitive CD34 human umbilical cord blood hematopoietic progenitors with high proliferative and replating potential. Blood 1993; 81(1): 41-8.
  2. Traycoff C, Abboud M, Laver J, Clapp D, Hoffman R, Law P, et al. Human umbilical cord blood hematopoietic progenitor cells: are they the same as their adult bone marrow counterparts? Blood Cells 1994; 20(2-3): 382-90.
  3. Pettengell R, Luft T, Henschler R, Hows JM, Dexter TM, Ryder D, et al. Direct comparison by limiting dilution analysis of long-term culture-initiating cells in human bone marrow, umbilical cord blood, and blood stem cells. Blood 1994; 84(11): 3653-9.
  4. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM. A functional comparison of CD34+ CD38-cells in cord blood and bone marrow. Blood 1995; 86(10): 3745-53.
  5. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Nat Acad Sci 1992; 89(9): 4109-13.
  6. Broxmeyer H, Kurtzberg J, Gluckman E, Auerbach A, Douglas G, Cooper S, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells 1990; 17(2): 313-29.
  7. Ng YY, van Kessel B, Lokhorst HM, Baert MR, van den Burg CM, Bloem AC, et al. Gene-expression profiling of CD34+ cells from various hematopoietic stem-cell sources reveals functional differences in stem-cell activity. J Leuk Biol 2004; 75(2): 314-23.
  8. Lansdorp PM, Dragowska W, Mayani H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 1993; 178(3): 787-91.
  9. Mayani H, Lansdorp PM. Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 1994; 83(9): 2410-7
  10. Tamaki S, Eckert K, He D, Sutton R, Doshe M, Jain G, et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res 2002; 69(6): 976-86.
  11. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Nat Acad Sci U S A 2000; 97(26): 14720-5.
  12. Hafizi M, Atashi A, Bakhshandeh B, Kabiri M, Nadri S, Hosseini RH, et al. MicroRNAs as Markers for Neurally Committed CD133+/CD34+ Stem Cells Derived from Human Umbilical Cord Blood. Biochem Genet 2013; 51(3-4): 175-88.
  13. Moritz T, Keller D, Williams D. Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease. J Exp Med 1993; 178(2): 529-36.
  14. Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A, Izpisúa Belmonte JC. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc 2010; 5(4): 811-20.
  15. Takenaka C, Nishishita N, Takada N, Jakt LM, Kawamata S. Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Exp Hematol 2010; 38(2): 154-62.
  16. Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 2009; 126(2): 220-32.
  17. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109(1): 235-42.
  18. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen
TH. Isolation of multipotentmesenchymal stem cells from umbilical cord blood. Blood 2004; 103(5): 1669-75.
  1. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 2001; 7(11): 581-8.
  2. Bieback K, Kern S, Klüter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004; 22(4): 625-34.
  3. Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MDF, et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 2008; 26(1): 146-50.
  4. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121(2): 368-74.
  5. Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 2001; 86(10): 1099-100.
  6. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21(1): 105-10.
  7. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord Blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
  8. Adegani FJ, Langroudi L, Arefian E, Soleimani M. Differentiation microRNAs affect stemness status of USSCs. Iran Red Crescent Med J 2011; 13(10): 726-34.
  9. Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med 2011; 22(1): 165-74.
  10. Langroudi L, Forouzandeh M, Soleimani M, Atashi A, Golestaneh AF. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol Biol Rep 2013; 40(7): 4429-37.
  11. Alimoghaddam K, Khalili M, Soleimani M, Lili M, Ghodsi P, Arjmand A, et al. Evaluation the effects of mip-1a on Ex vivo expansion of cord blood hematopoietic progenitor cells in different culture media. Molecular Therapy 2006; 13: S138.
  12. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 2001; 82(4): 583-90.
  13. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 2003; 33(6): 919-26.
  14. Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev 2001; 122(7): 713-34.
  15. Kim SJ, Lee JK, Kim JW, Jung JW, Seo K, Park SB, et al. Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells. J Mat Sci Mater Med 2008; 19(8): 2953-62.
  16. Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, et al. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res 2008; 86(10): 2168-78.
  17. Bhandari DR, Seo KW, Roh KH, Jung JW, Kang SK, Kang KS. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells. PLoS One 2010; 5(5): e10493.
  18. Seo KW, Lee SR, Bhandari DR, Roh KH, Park SB, So AY, et al. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB–MSCs). Biochem Biophys Res commun 2009; 384(1): 120-5.
  19. Yang SE, Ha CW, Jung M, Jin HJ, Lee M, Song H, et al. Mesenchymal stem/progenitor cells developed in cultures from UC blood. Cytotherapy 2004; 6(5): 476-86.
  20. Robinson S, Niu T, De Lima M, Ng J, Yang H, McMannis J, et al. Ex vivo expansion of umbilical cord blood. Cytotherapy 2005; 7(3): 243-50.
  21. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 2004; 22(7): 1330-7.
  22. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21(1): 105-10.
  23. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91(8): 1017-26.
  24. Boissel L, Tuncer HH, Betancur M, Wolfberg A, Klingemann H. Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol Blood Marrow Transplant 2008; 14(9): 1031-8.
  25. Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR, et al. Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev 2009; 5(4): 387-401.
  26. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3(3): 301-13.
  27. Can A, Karahuseyinoglu S. Concise review: Human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007; 25(11): 2886-95.
  28. Weiss   ML,   Medicetty   S,   Bledsoe  AR, Rachakatla
RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 2006; 24(3): 781-92.
  1. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev 2006; 2(2): 155-62.
  2. Covas DT, Panepucci RA, Fontes AM, Silva Jr WA, Orellana MD, Freitas MC, et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 2008; 36(5): 642-54.
  3. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008; 26(9): 2287-99.
  4. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005; 23(2): 220-9.
  5. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25(6): 1384-92.
  6. Panepucci RA, Siufi JL, Silva WA Jr, Siquiera R, Neder L, Orellana M, et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 2004; 22(7): 1263-78.
  7. Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 2007; 13(12): 1477-86.
  8. Feldmann RE Jr, Bieback K, Maurer MH, Kalenka A, Bürgers HF, Gross B, et al. Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis 2005; 26(14): 2749-58.
  9. Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 2005; 32(6): 270-9.
  10. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 2009; 259(2): 150-6.
  11. Bieback K, Klüter H. Mesenchymal stromal cells from umbilical cord blood. Curr Stem Cell Res Ther 2007; 2(4): 310-23.
  12. Bieback K, Kern S, Kocaömer A, Ferlik K, Bugert P. Comparing mesenchymal stromal cells from different human tissues: bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng 2008; 18(1 Suppl): S71-6.
  13. Rebelatto C, Aguiar A, Moretão MP, Senegaglia A, Hansen P, Barchiki F, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 2008; 233(7): 901-13.
  14. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord Blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
  15. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123-35.
  16. Kögler G, Sensken S, Wernet P. Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 2006; 34(11): 1589-95.
  17. McGuckin C, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell prolif 2005; 38(4): 245-55.
  18. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 2007; 21(2): 297-303.
  19. Ringdén O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lönnies H, et al. Mesenchymal stem cells for treatment of therapyresistant graft-versus-host disease. Transplantation 2006; 81(10): 1390-7.
  20. Le Blanc K, Ringdén O. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr Opin Immunol 2006; 18(5): 586-91.
  21. Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002; 30(8): 870-8.
  22. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004; 22(7): 1338-45.
  23. Delalat B, Pourfatholah AA, Movassaghpour AA, Soleimani M, Mozdarani H, Kaviani S. Evaluation of cotransplantation of human mesenchymal stem cells and umbilical cord blood  CD34 cells with CFU-S assay. Sci J Iran Blood Transfus Organ 2007; 3(4): 343-53. [Article in Farsi]
  24. Bużańska L, Machaj E, Zabłocka B, Pojda Z, Domańska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 2002; 115(Pt 10): 2131-8.
  25. Forraz N, Pettengell R, McGuckin CP. Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells 2004; 22(1): 100-8.
  26. McGuckin C, Forraz N. Potential for access to embryonic-like cells from human umbilical cord blood. Cell Prolif 2008; 41 Suppl 1: 31-40.
  27. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood–preliminary report. Leukemia 2007; 21(2): 297-303.
  28. Ma N, Stamm C, Kaminski A, Li W, Kleine H-D, Müller-Hilke B, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 2005; 66(1): 45-54.
  29. Denner L, Bodenburg Y, Zhao J, Howe M, Cappo J, Tilton R, et al. Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell prolif 2007; 40(3): 367-80.
  30. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123-35.
  31. Zeng F, Chen MJ, Baldwin DA, Gong ZJ, Yan JB, Qian H, et al. Multiorgan engraftment and differentiation of human cord blood CD34+ Lin− cells in goats assessed by gene expression profiling. Proc Nat Acad Sci U S A 2006; 103(20): 7801-6.
  32. Thomas ED. Bone marrow transplantation: a review. Semin Hematol 1999; 36(4 Suppl 7): 95-103.
  33. Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2008; 111(3): 1302-5.
  34. Hildbrand P, Cirulli V, Prinsen RC, Smith KA, Torbett BE, Salomon DR, et al. The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood 2004; 104(7): 2010-9.
  35. Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101(1): 168-72.
  36. Cho SW, Gwak SJ, Kang SW, Bhang SH, Song KW, Yang YS, et al. Enhancement of angiogenic efficacy of human cord blood cell transplantation. Tissue Eng 2006; 12(6): 1651-61.
  37. Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D, et al. Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+ KDR+ cells. FASEB J 2004; 18(12): 1392-4.
  38. Le Ricousse-Roussanne S, Barateau V, Contreres JO, Boval B, Kraus-Berthier L, Tobelem G. Ex vivo differentiated endothelial and smooth muscle cells from human cord blood progenitors home to the angiogenic tumor vasculature. Cardiovasc Res 2004; 62(1): 176-84.
  39. Tomonari A, Tojo A, Takahashi T, Iseki T, Ooi J, Takahashi S, et al. Resolution of Behcet’s disease after HLA-mismatched unrelated cord blood transplantation for myelodysplastic syndrome. Ann Hematol 2004; 83(7): 464-6.
  40. Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: Autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 2005; 95(4): 827-39.
  41. Liu CH, Hwang SM. Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 2005; 32(6): 270-9.
  42. Gang E, Jeong J, Han S, Yan Q, Jeon CJ, Kim H. In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy 2006; 8(3): 215-27.
  43. Reen DJ. Activation and functional capacity of human neonatal CD4 T-cells. Vaccine 1998; 16(14-15): 1401-8.
  44. Harris DT, Schumacher MJ, Locascio J, Besencon FJ, Olson GB, DeLuca D, et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Nat Acad Sci U S A 1992; 89(21): 10006-10.
  45. Pranke P, Failace RR, Allebrandt WF, Steibel G, Schmidt F, Nardi NB. Hematologic and immunophenotypic characterization of human umbilical cord blood. Acta Haematol 2001; 105(2): 71-6.
  46. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151-64.
  47. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4+ CD25+ T cells with regulatory properties from human blood. J Exp Med 2001; 193(11): 1303-10.
  48. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25+ CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3(2): 135-42.
  49. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4(+) CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002; 16(2): 311-23.
  50. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP. Triggering of OX40 (CD134) on CD4+ CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 2005; 105(7): 2845-51.
  51. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, Lucas PJ, Gress RE, Levine BL, et al. L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 2004; 104(12): 3804-12.
  52. Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 2005; 105(5): 2220-6.
  53. Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood 2006; 108(2): 426-31.
  54. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+ CD25+ regulatory T cells. J Exp Med 2001; 194(6): 847-54.
  55. Wing K, Ekmark A, Karlsson H, Rudin A, Suri‐Payer E. Characterization of human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunology 2002; 106(2): 190-9.
  56. Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4+CD25+ cells: a naturally occurring population of regulatory T cells. Blood 2001; 98(9): 2736-44.
  57. Lee CC, Lin SJ, Cheng PJ, Kuo ML. The regulatory function of umbilical cord blood CD4(+) CD25(+) T cells stimulated with anti-CD3/anti-CD28 and exogenous interleukin (IL)-2 or (IL)-15. Pediatr Allergy Immunol 2009; 20(7): 624-32.
  58. Chen L, Cohen AC, Lewis DB. Impaired allogeneic activation and T-helper 1 differentiation of human cord blood naive CD4 T cells. Biol Blood Marrow Transplant 2006; 12(2): 160-71.
  59. Arasteh J, Pourpak Z, Ebtekar M, Pourfathollah AA, Mohammad Hassan Z, Farahmandian T, Mahmoudzadeh-Niknam H. Evaluation of the Effect of IL-22 on Human Cord Blood CD4+ T Cells. Iran J Allergy Asthma Immunol 2010; 9(2): 59-67.
  60. Schaub B, Liu J, Höppler S, Schleich I, Huehn J, Olek S, et al. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 2009; 123(4): 774-82. e5.
  61. Hippen KL, Harker-Murray P, Porter SB, Merkel SC, Londer A, Taylor DK, et al. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells. Blood 2008; 112(7): 2847-57.
  62. Tolar J, Hippen KL, Blazar BR. Immune regulatory cells in umbilical cord blood: T regulatory cells and mesenchymal stromal cells. Br J Haematol 2009; 147(2): 200-6.
  63. Godfrey WR, Spoden DJ, Ying GG, Baker SR, Liu B, Levine BL, et al. Cord blood CD4(+) CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105(2): 750-8.
  64. Kim YJ, Broxmeyer HE. Immune regulatory cells in umbilical cord blood and their potential roles in transplantation tolerance. Crit Rev Oncol/Hematol 2011; 79(2): 112-26.
  65. Gaddy J, Broxmeyer HE. Cord Blood CD16+56- cells with low lytic activity are possible precursors of mature natural killer cells. Cell Immunol 1997; 180(2): 132-42.
  66. Fan YY, Yang BY, Wu CY. Phenotypic and functional heterogeneity of natural killer cells from umbilical cord blood mononuclear cells. Immunol Invest 2008; 37(1): 79-96.
  67. Dalle J, Menezes J, Wagner E, Blagdon M, Champagne J, Champagne M, et al. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr Res 2005; 57(5 Pt 1): 649-55.
  68. Wang Y, Xu H, Zheng X, Wei H, Sun R, Tian Z. High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity. Cell Mol Immunol 2007; 4(5): 377-82.
  69. Saghafi  S, Pourfathollah AA, Kheirandish M, Azimdoust A, Behnia M, Shahjahani  M, et al. Cytotoxicity of human cord blood natural killer cells is enhanced by recombinant interleukin-15. Iran J Allergy Asthma Immunol 2010; 9(2): 69-77.
  70. Gluckman E, Rocha V. History of the clinical use of
umbilical cord blood hematopoietic cells. Cytotherapy 2005; 7(3): 219-27.
  1. Sorg RV, Kögler G, Wernet P. Identification of cord blood dendritic cells as an immature CD11c-population. Blood 1999; 93(7): 2302-7.
  2. Borras FE, Matthews NC, Lowdell MW, Navarrete CV. Identification of both myeloid CD11c+ and lymphoid CD11c− dendritic cell subsets in cord blood. Br J Haematol 2001; 113(4): 925-31.
  3. Drohan L, Harding JJ, Holm B, Cordoba-Tongson E, Dekker CL, Holmes T, et al. Selective developmental defects of cord blood antigen-presenting cell subsets. Human Immunol 2004; 65(11): 1356-69.
  4. Crespo I, Paiva A, Couceiro A, Pimentel P, Orfão A, Regateiro F. Immunophenotypic and functional characterization of cord blood dendritic cells. Stem Cells Dev 2004; 13(1): 63-70.
  5. Naderi N, Pourfathollah AA, Alimoghaddam K, Moazzeni SM. Cord blood dendritic cells prevent the differentiation of naive T-helper cells towards Th1 irrespective of their subtype. Clin Exp Med 2009; 9(1): 29-36.
  6. Naderi N, Moazzeni SM, Pourfathollah AA, Alimoghaddam K. High expression of Fas ligand on cord blood dendritic cells: a possible immunoregulatory mechanism after cord blood transplantation. Transplant Proc 2011; 43(10): 3913-9.
  7. Giarratana MC, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 2005; 23(1): 69-74.
  8. Migliaccio AR, Whitsett C, Migliaccio G. Erythroid cells in vitro: from developmental biology to blood transfusion products. Curr Opin Hematol 2009; 16(4): 259-68.
  9. Mattia G, Milazzo L, Vulcano F, Pascuccio M, Macioce G, Hassan HJ, et al. Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin–amplified in clinical grade serum–free culture. Exp Hematol 2008; 36(2): 244-52.
  10. Barker J, Weisdorf D, Wagner J. Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 2001; 344(24): 1870-1.
  11. Magro E, Regidor C, Cabrera R, Sanjuán I, Forès R, Garcia-Marco JA, et al. Early hematopoietic recovery after single unit unrelated cord blood transplantation in adults supported by co-infusion of mobilized stem cells from a third party donor. Haematologica 2006; 91(5): 640-8.
  12. Bautista G, Cabrera  GR, Regidor  C, Forés  R, García-Marco GA, Ojeda  E, et al. Cord blood transplants supported by co-infusion of mobilized hematopoietic stem cells from a third-party donor. Bone Marrow Transplant 2009; 43(5): 365-73.
  13. Xiao M, Broxmeyer H, Horie M, Grigsby S, Lu L. Extensive proliferative capacity of single isolated CD34 human cord blood cells in suspension culture. Blood Cells 1993; 20(2-3): 455-66; discussion 466-7.
  14. Saeland S, Caux C, Favre C, Duvert V, Pebusque M, Mannoni P. Combined and sequential effects of human IL-3 and GM-CSF on the proliferation of CD34+ hematopoietic cells from cord blood. Blood 1989; 73(5): 1195-201.
  15. Koller MR, Bender J, Papoutsakis E, Miller W. Effects of synergistic cytokine combinations, low oxygen, and irradiated stroma on the expansion of human cord blood progenitors. Blood 1992; 80(2): 403-11.
  16. Srour E, Brandt J, Briddell R, Grigsby S, Leemhuis T, Hoffman R. Long-term generation and expansion of human primitive hematopoietic progenitor cells in vitro. Blood 1993; 81(3): 661-9.
  17. Mayani H, Dragowska W, Lansdorp PM. Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 1993; 81(12): 3252-8.
  18. Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 1993; 81(10): 2579-84.
  19. Du X, Scott D, Yang Z, Cooper R, Xiao X, Williams D. Interleukin-11 stimulates multilineage progenitors, but not stem cells, in murine and human long-term marrow cultures. Blood 1995; 86(1): 128-34.
  20. Koller MR, Oxender M, Brott DA, Palsson BØ. flt-3 ligand is more potent than c-kit ligand for the synergistic stimulation of ex vivo hematopoietic cell expansion. J Hematother 1996; 5(5): 449-59.
  21. Khalili M, Alimoghadam K, Soleimani M, Ghodsi P, Hayat P, Ghavamzadeh A, et al. Evaluation of the best condition for ex vivo expansion of hematopoietic stem cells for the propose of cord blood transplantation. Yakhteh 2006; 8(1): 39-44.
  22. Ebtekar M, Shahrokhi S, Alimoghaddam K. Characteristics of cord blood stem cells: Role of substance P (SP) and calcitonin gene-related peptide (CGRP). Stem Cells and Cancer Stem Cells 2012; 2: 27-36.
  23. Qiu L, Meagher R, Welhausen S, Heye M, Brown R, , Herzig RHEx vivo expansion of CD34+ umbilical cord blood cells in a defined serum-free medium (QBSF-60) with early effect cytokines. J Hematother Stem Cell Res 1999; 8(6): 609-18.
  24. Alimoghaddam  K, Khali M, Soleimani M, Moezi L, Ghavamzadeh  A. Serum Free Fedia Is the Best for Cord Blood Hematopoietic Cells Expansion. Molecular Therapy 2005; 11: S405.
  25. Liu  CH,  WU  ML,  Hwang  S.  Optimization of serum
free medium for cord blood mesenchymal stem cells. Biochem Eng J 2007; 33(1): 1-9.
  1. Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, et al. Human Umbilical Cord-Derived Mesenchymal Stem Cells Do Not Undergo Malignant Transformation during Long-Term Culturing in Serum-Free Medium. PLoS One 2014; 9(6): e98565.
  2. Xue C, Kwek Kyc, Chan JKY, Chen Q , Lim  M. The hollow fiber bioreactor as a stroma-supported, serum-free ex vivo expansion platform for human umbilical cord blood cells. Biotechnol J 2014; 9(7): 980-9.
  3. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425(6960):
836-41.
  1. Soleimani M, Mozdarani H, Pourfathollah AA, Mortazavi Y, Alimoghaddam K, Nikogoftar M, et al. A Co-culture System for Expansion of Nonenriched Cord Blood Stem/Progenitor Cells. Biotechnology 2005; 4(4): 310-5.
  2. Soleimani M, Mozdarani H, Pourfathollah A, Mortazavi Y, Alimoghaddam K, Nikogoftar M, et al. Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38-Using Liver Cells. Iran Biomed J 2005; 9(3): 111-6.
  3. Mehrasa R, Vaziri H, Oodi A, Khorshidfar M, Nikogoftar M, Golpour M, et al. Mesenchymal Stem Cells as a Feeder Layer Can Prevent Apoptosis of Expanded Hematopoietic Stem Cells Derived from Cord Blood. Int J Mol Cell Med 2014; 3(1): 1-10.
  4. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S, et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192(9): 1365-72.
  5. Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R. Role of members of the Wnt gene family in human hematopoiesis. Blood 1998; 92(9): 3189-202.
  6. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6(3): 314-22.
  7. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C, et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 2006; 12(2): 240-5.
  8. Huang CH, Chen PM, Lu TC, Kung WM, Chiou TJ, Yang MH, et al. Purified Recombinant TAT-Homeobox B4 Expands CD34+ Umbilical Cord Blood and Peripheral Blood Progenitor Cells Ex Vivo. Tissue Eng Part C Methods 2009; 16(3): 487-96.
  9. Nishino T, Miyaji K, Ishiwata N, Arai K, Yui M, Asai Y, et al. Ex vivo expansion of human hematopoietic stem cells by a small-molecule agonist of c-MPL. Exp Hematol 2009; 37(11): 1364-77. e4.
  10. Sangeetha V, Kale VP, Limaye LS. Expansion of Cord Blood CD34+ Cells in Presence of zVADfmk and zLLYfmk Improved Their In Vitro Functionality and In Vivo Engraftment in NOD/SCID Mouse. PloS One 2010; 5(8): e12221.
  11. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS. The endoplasmic reticulum chaperone protein GRP94 is required for maintaining hematopoietic stem cell interactions with the adult bone marrow niche. PLoS One 2011; 6(5): e20364.
  12. Luo B, Lam BS, Lee SH, Wey S, Zhou H, Wang M, et al. The endoplasmic reticulum chaperone protein GRP94 is required for maintaining hematopoietic stem cell interactions with the adult bone marrow niche man primate transplant models. Cell Stem Cell 2011; 8(4): 445-58.
  13. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010; 329(5997): 1345-8.
  14. Hashemi  Z,  Moghadam  F,  Soleimani  M,  Hafizi  M,
Amirizadeh N. TGF-b downregulation by RNAi technique in ex vivo-expanded HSCs on 3D DBM scaffold. Tehran University Medical Journal 2012; 70(2): 86-95.
  1. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115: 281-92.
  2. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002; 20(12): 1261-4.
  3. Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 2004; 21: 843-51.
  4. Peled T, Mandel J, Goudsmid R, Landor C, Hasson N, Harati D, et al. Pre-clinical development of cord blood derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 2004; 6: 344-55.
  5. Peled T, Nagler A, Treves AJ. Preferential expansion of cord blood early progenitors enabled by linear polyamine copper chelators. Biol Blood Marrow Transplant 2003; 9: 129-30.
  6. Peled T, Landau E, Prus E, Treves AJ, Nagler A, Fibach E. Cellular copper content modulates differentiation and selfrenewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 2002; 116(3): 655-61.
  7. Purton LE, Bernstein ID, Collins SJ. All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood 2000; 95(2): 470-7.
  8. Hu Z, Negrotto S, Gu X, Mahfouz R, Ng KP, Ebrahem Q, et al. Decitabine maintains hematopoietic precursor self-renewal by preventing repression of stem cell genes by a differentiation-inducing stimulus. Mol Cancer Ther 2010; 9(6): 1536-43.
  9. Seet LF, Teng E, Lai YS, Laning J, Kraus M, Wnendt S, et al. Valproic acid enhances the engraftability of human umbilical cord blood hematopoietic stem cells expanded under serum-free conditions. Eur J Haematol 2009; 82(2): 124-32.
  10. Nishino T, Wang C, Mochizuki-Kashio M, Osawa M, Nakauchi H, Iwama A. Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase. PLoS One 2011; 6(9): e24298.
 
 
 
 
Sci J Iran Blood Transfus Organ 2015; 12(2): 183-205
 
Review Article
 
 
 
 
 


Umbilical cord blood: stem cells and ex vivo
expansion methods
 
Mohammadali F.1, Atashi A.1, Soleimani M.1, Abroun S.1, Pourfathollah A.A.2,3,
Kaviani S.1, Ajami M.1, Ajami M.1
 
1Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
 
Abstract
Background and Objectives
Umbilical cord blood (UCB) is an accessible source of hematopoietic stem cells (HSCs). Along with the advantages, UCB also has limitations: the  low volume and  the absolute number of HSCs available in UCB leading to the delayed engraftment. Given the limitations, many investigators have sought to accelerate engraftment and increase the absolute number of stem cells in UCB units.
 
Materials and Methods
In the present study more than 200  published articles about UCB  were reviewed. This review article is aimed to focus on the importance of  using cord blood, the nature of stem cells in cord blood, and the ex vivo expansion techniques of  UCB HSC.
 
Results
UCB HSCs possess higher proliferative potentials and contain a higher proportion of primitive compartment as compared to bone marrow and  peripheral blood. Several studies have reported the presence of different cell populations besides HSCs in cord blood that enable the use of  these sources in immunotherapy, tissue engineering, and regenerative medicine. Thus, the strategies to isolate and expand selected subpopulations from UCB and the use of these cells  in treatment  of various diseases are the areas of active research.
 
Conclusions
Umbilical cord blood is an attractive source in both research and  modern clinical applications providinh a potentially useful alternative for patients who do not have an HLA-matched bone marrow donor. Besides the safety and feasibility of UCB, the other areas including the acceleration of the engraftment, the extension of access, the quality assurance, and the outcomes in the specific subgroups of patients are also required to be investigated.
 
Key words: Umbilical Cord Blood, Stem Cells, Cord Blood Stem Cell Transplantation
 
Received:  24 Jun 2014
Accepted: 15 Fec 2015
 
 

 

Correspondence: Soleimani M., PhD of Hematology and Blood Bank. Associate Professor of Faculty of Medical Sciences, Tarbiat Modares University.
P.O.Box: 14115-111, Tehran, Iran. Tel: (+9821) 88011001; Fax: (+9821) 88013030
E-mail: soleim_m@modares.ac.ir
Correspondence: Pourfathollah AA., PhD of Immunology. Professor of Faculty of Medical Sciences, Tarbiat Modares University and Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine.
P.O.Box:14115-111, Tehran, Iran. Tel: (+9821) 8801101; Fax: (+9821) 88013030
E-mail: pourfa@modares.ac.ir
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadali F, Atashi A, Soleimani M, Abroun S, Pourfathollah A, Kaviani S, et al . Umbilical cord blood: stem cells and ex vivo expansion methods. Sci J Iran Blood Transfus Organ 2015; 12 (2) :183-205
URL: http://bloodjournal.ir/article-1-874-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (Summer 2015) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4645