1. Rheingold SR, Bhojwani D, Ji L, Xu X, Devidas M, Kairalla JA, et al. Determinants of survival after first relapse of acute lymphoblastic leukemia: a Children's Oncology Group study. Leukemia 2024; 38(11): 2382-94. [
DOI:10.1038/s41375-024-02395-4] [
PMID] [
]
2. Iqbal M, Kharfan-Dabaja MA. Relapse of Hodgkin lymphoma after autologous hematopoietic cell transplantation: A current management perspective. Hematol Oncol Stem Cell Ther 2021; 14(2): 95-103. [
DOI:10.1016/j.hemonc.2020.05.011] [
PMID]
3. Zhou D, Zhu X, Xiao Y. CAR-T cell combination therapies in hematologic malignancies. Exp Hematology Oncol 2024; 13(1): 69. [
DOI:10.1186/s40164-024-00536-0] [
PMID] [
]
4. Cuenca M, Peperzak V. Advances and Perspectives in the Treatment of B-Cell Malignancies. Cancers (Basel) 2021; 13(9): 2266. [
DOI:10.3390/cancers13092266] [
PMID] [
]
5. Maleki EH, Bahrami AR, Matin MM. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis 2024; 11(1): 189-204. [
DOI:10.1016/j.gendis.2022.11.025] [
PMID] [
]
6. Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11(1): 49. [
DOI:10.1186/s40364-023-00482-9] [
PMID] [
]
7. Ramírez-Chacón A, Betriu-Méndez S, Bartoló-Ibars A, González A, Martí M, Juan M. Ligand-based CAR-T cell: Different strategies to drive T cells in future new treatments. Front Immunol 2022; 13: 932559. [
DOI:10.3389/fimmu.2022.932559] [
PMID] [
]
8. Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8(1): 306. [
DOI:10.1038/s41392-023-01521-5] [
PMID] [
]
9. Rajabzadeh A, Rahbarizadeh F, Ahmadvand D, Kabir Salmani M, Hamidieh AA. A VHH-Based Anti-MUC1 Chimeric Antigen Receptor for Specific Retargeting of Human Primary T Cells to MUC1-Positive Cancer Cells. Cell J 2021; 22(4): 502-13. [
DOI:10.1186/s12860-021-00397-z] [
PMID] [
]
10. Nasiri F, Safarzadeh Kozani P, Rahbarizadeh F. T-cells engineered with a novel VHH-based chimeric antigen receptor against CD19 exhibit comparable tumoricidal efficacy to their FMC63-based counterparts. Front Immunol 2023; 14: 1063838. [
DOI:10.3389/fimmu.2023.1063838] [
PMID] [
]
11. Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Mahboudi F, Ahmadvand D, Sharifzadeh Z, et al. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: Towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta 2014; 1840(1): 378-86. [
DOI:10.1016/j.bbagen.2013.09.029] [
PMID]
12. Banihashemi SR, Hosseini AZ, Rahbarizadeh F, Ahmadvand D. Development of specific nanobodies (VHH) for CD19 immuno-targeting of human B-lymphocytes. Iran J Basic Med Sci 2018; 21(5): 455-64.
13. Sena-Esteves M, Gao G. Production of High-Titer Retrovirus and Lentivirus Vectors. Cold Spring Harb Protoc 2018; 2018(4). [
DOI:10.1101/pdb.prot095687] [
PMID]
14. Arjomandnejad M, Sylvia K, Blackwood M, Nixon T, Tang Q, Muhuri M, et al. Modulating immune responses to AAV by expanded polyclonal T-regs and capsid specific chimeric antigen receptor T-regulatory cells. Mol Ther Methods Clin Dev 2021; 23: 490-506. [
DOI:10.1016/j.omtm.2021.10.010] [
PMID] [
]
15. Brown CE, Wright CL, Naranjo A, Vishwanath RP, Chang WC, Olivares S, et al. Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing. J Immunol Methods 2005; 297(1-2): 39-52. [
DOI:10.1016/j.jim.2004.11.021] [
PMID]
16. Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S, Kobold S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int J Mol Sci 2019; 20(6): 1283. [
DOI:10.3390/ijms20061283] [
PMID] [
]
17. Safarzadeh Kozani P, Naseri A, Mirarefin SMJ, Salem F, Nikbakht M, Evazi Bakhshi S, et al. CAR-T cells for cancer immunotherapy. Biomark Res 2022; 10(1): 24. [
DOI:10.1186/s40364-022-00371-7] [
PMID] [
]
18. Bannas P, Hambach J, Koch-Nolte F. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Front Immunol 2017; 8: 1603. [
DOI:10.3389/fimmu.2017.01603] [
PMID] [
]
19. Mazinani M, Rahbarizadeh F. CAR-T cell potency: from structural elements to vector backbone components. Biomark Res 2022; 10(1): 70. [
DOI:10.1186/s40364-022-00417-w] [
PMID] [
]
20. Bao C, Gao Q, Li LL, Han L, Zhang B, Ding Y, et al. The Application of Nanobody in CAR-T Therapy. Biomolecules 2021; 11(2): 238. [
DOI:10.3390/biom11020238] [
PMID] [
]
21. Mao R, Kong W, He Y. The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: Moderate is better. Front Immunol 2022; 13: 1032403. [
DOI:10.3389/fimmu.2022.1032403] [
PMID] [
]
22. Hirobe S, Imaeda K, Tachibana M, Okada N. The Effects of Chimeric Antigen Receptor (CAR) Hinge Domain Post-Translational Modifications on CAR-T Cell Activity. Int J Mol Sci 2022; 23(7): 4056. [
DOI:10.3390/ijms23074056] [
PMID] [
]
23. Qin L, Lai Y, Zhao R, Wei X, Weng J, Lai P, et al. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells. J Hematol Oncol 2017; 10(1): 68. [
DOI:10.1186/s13045-017-0437-8] [
PMID] [
]
24. Fujiwara K, Tsunei A, Kusabuka H, Ogaki E, Tachibana M, Okada N. Hinge and Transmembrane Domains of Chimeric Antigen Receptor Regulate Receptor Expression and Signaling Threshold. Cells 2020; 9(5): 1182. [
DOI:10.3390/cells9051182] [
PMID] [
]
25. Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 2015; 3(2): 125-35. [
DOI:10.1158/2326-6066.CIR-14-0127] [
PMID] [
]
26. Li N, Quan A, Li D, Pan J, Ren H, Hoeltzel G, et al. The IgG4 hinge with CD28 transmembrane domain improves VHH-based CAR T cells targeting a membrane-distal epitope of GPC1 in pancreatic cancer. Nat Commun 2023; 14(1): 1986. [
DOI:10.1038/s41467-023-37616-4] [
PMID] [
]
27. Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, Gunset G, et al. Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell 2015; 28(4): 415-28. [
DOI:10.1016/j.ccell.2015.09.004] [
PMID] [
]
28. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17(8): 1453-64. [
DOI:10.1038/mt.2009.83] [
PMID] [
]
29. Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. Cell Rep 2017; 21(1): 17-26. [
DOI:10.1016/j.celrep.2017.09.015] [
PMID] [
]
30. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21(6): 581-90. [
DOI:10.1038/nm.3838] [
PMID] [
]