[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 17, Issue 2 (Summer 2020) ::
Sci J Iran Blood Transfus Organ 2020, 17(2): 100-112 Back to browse issues page
Evaluation of microRNAs; mir223, mir222 and mir92a levels in the Platelet-derived microparticles in the Platelet concentrates produced by Platelet Rich Plasma method during storage
Gh. Abbaszadeh , K. Atarodi , K. Mousavi Hosseini
Keywords: Key words: MicroRNA, Platelets, Plasma
Full-Text [PDF 823 kb]   (806 Downloads)     |   Abstract (HTML)  (2036 Views)
Type of Study: Research | Subject: Blood banking
Published: 2020/06/30
Full-Text:   (1421 Views)
    References:
 
 
  1. Pontes TB, Moreira-Nunes Cde F, Maues JH, Lamarao LM, de Lemos JA, Montenegro RC, et al. The miRNA Profile of Platelets Stored in a Blood Bank and Its Relation to Cellular Damage from Storage. PLoS One 2015; 10(6): e0129399.
  2. Holme S. Storage and Quality Assessment of Platelets. Vox Sang 1998; 74 Suppl 2: 207-16.
  3. Brecher M. Technical Manual. 15th ed. Bethesda: AABB; 2005. p. 172-5.
  4. Árnason N, Sigurjónsson Ó. New strategies to understand platelet storage lesion. ISBT Sci Ser 2017; 12(4): 496-500.
  5. Ohto H, Nollet KE. Overview on platelet preservation: better controls over storage lesion. Transfus Apher Sci 2011; 44(3): 321-5.
  6. Shrivastava M. The platelet storage lesion. Transfus Apher Sci 2009; 41(2): 105-13.
  7. Thon JN, Schubert P, Devine DV. Platelet storage lesion: a new understanding from a proteomic perspective. Transfus Med Rev 2008; 22(4): 268-79.
  8. Yaghoubi R, Shamsasanjan K, Karimi G, Zadsar M. Evaluation of the quality of platelet components in Azarbaijan Sharghi Province: the comparison in the PSL between a blood center and a hospital. Sci J Iran Blood Transfus Organ 2017; 14(4): 261-71. [Article in Farsi]
  9. Dahiya N, Sarachana T, Vu L, Becker KG, Wood WH 3rd, Zhang Y, et al. Platelet MicroRNAs: An Overview. Transfus Med Rev 2015; 29(4): 215-9.
  10. Yu S, Deng G, Qian D, Xie Z, Sun H, Huang D, et al. Detection of apoptosis-associated microRNA in human apheresis platelets during storage by quantitative real-time polymerase chain reaction analysis. Blood Transfus 2014; 12(4): 541-7.
  11. Sahler J, Grimshaw K, Spinelli SL, Refaai MA, Phipps RP, Blumberg N. Platelet storage and transfusions: new concerns associated with an old therapy. Drug Discov Today Dis Mech 2011; 8(1-2): e9-e14.
  12. Osman A, Falker K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 2011; 22(6): 433-41.
  13. Gao J, Ma X, Zhang Y, Guo M, Shi D. The role of microRNAs in prethrombotic status associated with coronary artery disease. Thromb Haemost 2017; 117(3): 429-36.
  14. Li J, Tan M, Xiang Q, Zhou Z, Yan H. Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thromb Res 2017; 154: 96-105.
  15. Provost P. The clinical significance of platelet microparticle-associated microRNAs. Clin Chem Lab Med 2017; 55(5): 657-66.
  16. Elgheznawy A, Fleming I. Platelet-enriched microRNAs and cardiovascular homeostasis. Antioxidants & redox signaling 2017; 29(9): 902-21.
  17. McManus DD, Freedman JE. MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol 2015; 12(12): 711-7.
  18. Pan Y, Liang H, Liu H, Li D, Chen X, Li L, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol 2014; 192(1): 437-46.
  19. Gidlof O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 2013; 121(19): 3908-17, S1-26.
  20. Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, et al. Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood 2013; 122(2): 253-61.
  21. Provost P. Platelet microRNAs A2. Michelson A.  Platelets. 3rd ed. Boston: Academic Press; 2013. p. 91-101.
  22. Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 2013; 100(1): 7-18.
  23. Chen LJ, Lim SH, Yeh YT, Lien SC, Chiu JJ. Roles of microRNAs in atherosclerosis and restenosis. J Biomed Sci 2012; 19(1): 79.
  24. Yan Y, Zhang J, Zhang Q, Chen Y, Zhu X, Xia R. The role of microRNAs in platelet biology during storage. Transfus Apher Sci 2017; 56(2): 147-50.
  25. Chandler WL. Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols. Blood Coagul Fibrinolysis 2013; 24(2): 125-32.
  26. Zwicker JI, Lacroix R, Dignat-George F, Furie BC, Furie B. Measurement of platelet microparticles. Methods Mol Biol 2012; 788:  127-39.
  27. Xie RF, Hu P, Li W, Ren YN, Yang J, Yang YM, et al. The effect of platelet-derived microparticles in stored apheresis platelet concentrates on polymorphonuclear leucocyte respiratory burst. Vox Sang 2014; 106(3): 234-41.
  28. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29(9): e45.
  29. Lindsay CR, Edelstein LC. MicroRNAs in Platelet Physiology and Function. Semin Thromb Hemost 2016; 42(3): 215-22.
  30. Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost 2012; 108(4): 599-604.
  31. Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16(9): 961-6.
  32. Schubert P, Devine DV. De novo protein synthesis in mature platelets: a consideration for transfusion medicine. Vox Sang 2010; 99(2): 112-22.
  33. Harrison P, Goodall AH. "Message in the platelet"--more than just vestigial mRNA! Platelets 2008; 19(6): 395-404.
  34. Maués JHDS, Aquino Moreira-Nunes CFRodriguez Burbano RM. MicroRNAs as a Potential Quality Measurement Tool of Platelet Concentrate Stored in Blood Banks-A Review. Cells 2019; 8(10): 1256.
  35. Yuan Z, Wu Q, Chen X, Wei Y. Altered microRNA expression profles are involved in Storage Lesions of Apheresis Platelet. BioRxiv 2018: 386011.
  36. Camaioni C, Gustapane M, Cialdella P, Della Bona R, Biasucci LM. Microparticles and microRNAs: new players in the complex field of coagulation. Intern Emerg Med 2013; 8(4): 291-6.
  37. Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011; 117(19): 5189-97.
  38. Vasina E, Heemskerk JW, Weber C, Koenen RR. Platelets and platelet-derived microparticles in vascular inflammatory disease. Inflamm Allergy Drug Targets 2010; 9(5): 346-54.
  39. Shi L, Fisslthaler B, Zippel N, Frömel T, Hu J, Elgheznawy A, et al. MicroRNAs-223 antagonises angiogenesis by targeting β1 integrin and preventing growth factor signaling in endothelial cells. Circ Res 2013; 113(12): 1320-30.
  40. Sun G, Li H, Rossi JJ. Sequence context outside the target region influences the effectiveness of miR-223 target sites in the RhoB 3′ UTR. Nucleic Acids Res
    2009; 38(1): 239-52.
  41. Turner V, Mitchell S, Kang S, Hawker R. A comparative study of platelets stored in polyvinyl chloride containers plasticised with butyryl trihexyl citrate or triethylhexyl trimellitate. Vox Sang 1995; 69(3): 195-200.
  42. Pontes TB, Moreira-Nunes CdFA, da Silva Maués JH, Lamarão LM, de Lemos JAR, Montenegro RC, et al. The miRNA profile of platelets stored in a blood bank and its relation to cellular damage from storage. PloS One 2015; 10(6): e0129399.
  43. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32(4): 979-87.
  44. Mukai N, Nakayama Y, Ishi S, Murakami T, Ogawa S, Kageyama K, et al. Cold storage conditions modify microRNA expressions for platelet transfusion. PLoS One 2019; 14(7): e0218797.
  45. Cox D, Pontes TB, Moreira-Nunes CdFA, Maués JHdS, Lamarão LM, de Lemos JAR, et al. The miRNA Profile of Platelets Stored in a Blood Bank and Its Relation to Cellular Damage from Storage. PLoS One 2015; 10(6): e0129399.
 
 
 
 


 
 
 
Sci J Iran Blood Transfus Organ 2020;17(2): 100-112
Original Article
 

 

Evaluation of microRNAs; mir223, mir222 and mir92a levels
 in the Platelet-derived microparticles in the Platelet concentrates produced by Platelet Rich Plasma method during storage
 
Abbaszadeh G.1, Atarodi K.1, Mousavi Hosseini  K.1
 
 
1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
 
 
 
Abstract
Background and Objectives
Platelets release microparticles containing cellular components, including microRNAs, during storage. Assessment of these microRNAs is one of the markers for evaluation of platelet storage lesions. The aim of the present study was to evaluate the level of changes in the expression of mir-223, mir-92a and mir-222 during storage in platelets prepared by platelet rich plasma method.
 
Materials and Methods
In this experimental study, 5 platelet concentrates prepared by PRP method were collected from blood donors and stored at 22°C for 5 days with agitation. Changes in the expression levels of mir-223, mir-92a and mir-222 were determined using qRT- PCR method on days zero, three and five of storage. The results were analyzed using paired-sample-T test using GenEX version 7 software.
 
Results
It was found that the expression of miR-223 gradually increased during the third and fifth days compared to the day 0 of platelet concentrate storage (p < 0.05). The expression of mir-92a also significantly increased on the third and the fifth days compared to day 0 of storage (p < 0.05). However, the expression of mir-222 gradually decreased over the fifth day of storage (p < 0.05).
 
Conclusions 
This study showed that the determination of miRNAs in the platelet-derived microparticles with common markers such as platelet count, MPV determination, platelet volume determination, leukocyte count, swirling assay, and pH measurement can be useful tools for identifying cellular damage associated with platelet storage lesion and maybe potential indicators for evaluating the quality and viability of platelets stored in vitro conditions.
 
Key words: MicroRNA, Platelets, Plasma
 
 
Received:   4 Feb 2020
Accepted: 25 Apr 2020
 
 

Correspondence: Mousavi Hosseini K., PhD in Medicinal Chemistry. Professor of Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine.
P.O.Box: 14665-1157, Tehran, Iran. Tel: (+9821) 82052160; Fax: (+9821) 88601599
E-mail: mkmousavi@yahoo.com
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abbaszadeh G, Atarodi K, Mousavi Hosseini K. Evaluation of microRNAs; mir223, mir222 and mir92a levels in the Platelet-derived microparticles in the Platelet concentrates produced by Platelet Rich Plasma method during storage. Sci J Iran Blood Transfus Organ 2020; 17 (2) :100-112
URL: http://bloodjournal.ir/article-1-1330-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 2 (Summer 2020) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4645