[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 17, Issue 3 (Autumn 2020) ::
Sci J Iran Blood Transfus Organ 2020, 17(3): 226-241 Back to browse issues page
Advances and challenges in storage, transplantation, expansion and homing of Umbilical Cord Blood Hematopoietic Stem Cells (UCB-HSCs)
V. Niazi , S. Heydari Keshel , M. Shahbazi
Keywords: Key words: Umbilical Cord Blood, Hematopoietic Stem Cells, Transplantation
Full-Text [PDF 838 kb]   (766 Downloads)     |   Abstract (HTML)  (2031 Views)
Type of Study: Review Article | Subject: Stem cells
Published: 2020/10/1
Full-Text:   (1865 Views)
References:
  1. Gluckman E, Broxmeyer HE, Auerbach AD, Friedman HS, Douglas GW, Devergie A, et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321(17): 1174-8.
  2. Smith AR, Wagner JE. Current clinical management of Fanconi anemia. Expert Rev Hematol 2012; 5(5): 513-22.
  3. Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43(7): 498-513.
  4. Ballen KK, Verter F, Kurtzberg J. Umbilical cord blood donation: Public or private? Bone Marrow Transpl 2015; 50: 1271-8.
  5. Brown KS, Rao MS, Brown HL. The Future State of Newborn Stem Cell   Banking. J Clin Med 2019; 8(1): 117.
  6. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci 1992; 89(9): 4109-13.
  7. Wang JC, Doedens M, Dick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 1997; 89(11): 3919-24.
 
 
 
 
 
  1. Mayani H, Lansdorp PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998; 16(3): 153-65.
  2. Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer H, et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 1994; 83(9): 2489-97.
  3. Bock TA, Orlic D, Dunbar CE, Broxmeyer HE, Bodine DM. Improved engraftment of human hematopoietic cells in severe combined immunodeficient (SCID) mice carrying human cytokine transgenes. J Exp Med 1995; 182(6): 2037-43.
  4. Broxmeyer H. Proliferation, self-renewal, and survival characteristics of cord blood hematopoietic stem and progenitor cells. In: Cord Blood: Biology, Immunology, Banking, and Clinical Transplantation. Bethesda, MD: American Association of Blood Banking; 2004; p. 21.
  5. Mayani H. Biological differences between neonatal and adult human hematopoietic stem/progenitor cells. Stem Cells Dev 2010; 19(3): 285-98.
  6. Broxmeyer HE. Inhibiting HDAC for human hematopoietic stem cell expansion. J Clin Invest 2014; 124(6): 2365-8.
  7. Flores-Guzmán P, Fernández-Sánchez V, Mayani H. Concise Review: Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem and Progenitor Cells: Basic Principles, Experimental Approaches, and Impact in Regenerative Medicine. Stem Cells Transl Med 2013; 2(11): 830-8.
  8. Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43(7): 498-513.
  9. Mehta RS, Rezvani K, Olson A, Oran B, Hosing C, Shah N, et al. Novel techniques for ex vivo expansion of cord blood: clinical trials. Front Med 2015; 2: 89.
  10. Mayani H, Wagner JE, Broxmeyer HE. Cord blood research, banking, and transplantation: achievements, challenges,  and perspectives. Bone Marrow Transplant
2020; 55(1): 48-61.
  1. Rebelatto C, Aguiar A, Moretao M, Senegaglia A, Hansen P, Barchiki F, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 2008; 233(7): 901-13.
  2. Montesinos J, Flores-Figueroa E, Castillo-Medina S, Flores-Guzman P, Hernandez-Estevez E, Fajardo-Orduna G, et al. Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 2009; 11(2): 163-76.
  3. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989; 86: 3828-32.
  4. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123-35.
  5. Shirzadeh E, Heidari Keshel S, Ezzatizadeh V, Jabbehdari S, Baradaran-Rafii A. Unrestricted somatic stem cells, as a novel feeder layer: Ex vivo culture of human limbal stem cells. J Cell Biochem 2018; 119(3): 2666-78.
  6. Wagner JE, Broxmeyer HE, Byrd RL, Zehnbauer B, Schmeckpeper B, Shah N, et al. Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood 1992; 79(7): 1874-81.
  7. Wagner J, Steinbuch M, Kernan N, Broxmayer H, Gluckman E. Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. The Lancet 1995; 346(8969): 214-9.
  8. Butler MG, Menitove JE. Umbilical cord blood banking: an update. J Assist Reprod Genet 2011; 28(8): 669-76.
  9. Ballen K. Challenges in umbilical cord blood stem cell banking for stem cell   reviews and reports. Stem Cell Rev Rep 2010; 6(1): 8-14.
  10. Lasky LC, Lane TA, Miller JP, Lindgren B, Patterson HA, Haley NR, et al. In utero or ex utero cord blood collection: which is better? Transfusion 2002; 42(10): 1261-7.
  11. Chow R, Nademanee A, Rosenthal J, Karanes C, Jaing TH, Graham ML, et al. Analysis of hematopoietic cell transplants using plasma-depleted cord blood products that are not red blood cell reduced. Biol Blood Marrow Transplant 2007; 13(11): 1346-57.
  12. Shearer WT, Lubin BH, Cairo MS, Notarangelo LD. Cord Blood Banking for Potential Future Transplantation. Pediatrics 2017; 140(5): e20172695.
  13. Ballen KK, Barker JN, Stewart SK, Greene MF, Lane TA. Collection and preservation of cord blood for personal use. Biol Blood Marrow Transplant 2008; 14: 356-63.
  14. Johnson FL. Placental blood transplantation and autologous banking-caveat emptor. J Pediatr Hematol Oncol 1997; 19: 183-6.
  15. Ooi J. Cord blood transplantation in adults. Bone Marrow Transplant 2009; 44(10): 661-6.
  16. Capitano ML, Hangoc G, Cooper S, Broxmeyer HE. Mild Heat Treatment Primes Human CD 34+ Cord Blood Cells for Migration Toward SDF‐1α and Enhances Engraftment in an NSG Mouse Model. Stem Cells 2015; 33(6): 1975-84.
  17. Huang X, Guo B, Liu S, Wan J, Broxmeyer HE. Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment. Nat Commun 2018; 9(1): 2741.
  18. Guo B, Huang X, Cooper S, Broxmeyer HE. Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment. Nat Med 2017; 23(4): 424.
  19. Lee CJ, Savani BN, Mohty M, Labopin M, Ruggeri A, Schmid C, et al. Haploidentical hematopoietic cell transplantation for adult acute myeloid leukemia: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2017; 102(11): 1810-22.
  20. Smith FO, King R, Nelson G, Wagner JE, Robertson KA, Sanders JE, et al. Unrelated donor bone marrow transplantation for children with juvenile myelomonocytic leukaemia. Br J Haematol 2002; 116(3): 716-24.
  21. Navarrete C, Contreras M. Cord blood banking: a historical perspective. Br J Haematol 2009; 147(2): 236-45.
  22. Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001; 344(24): 1815-22.
  23. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 2013; 122(4): 491-8.
  24. Rocha V, Kabbara N, Ionescu I, Ruggeri A, Purtill D, Gluckman E. Pediatric related and unrelated cord blood transplantation for malignant diseases. Bone Marrow Transplant 2009; 44(10): 653.
  25. Eapen M, Rubinstein P, Zhang M-J, Stevens C, Kurtzberg J, Scaradavou A, et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. The Lancet 2007; 369(9577): 1947-54.
  26. Prasad    V,    Kurtzberg    J.    Umbilical   cord   blood
transplantation for non-malignant diseases. Bone Marrow Transplant 2009; 44(10): 643.
  1. Smith AR, Wagner JE. Alternative haematopoietic stem cell sources for transplantation: place of umbilical
cord blood. Br J Haematol 2009; 147(2): 246-61.
  1. Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang M-J, Arcese W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol 2010; 11(7): 653-60.
  2. Munoz J, Shah N, Rezvani K, Hosing C,   Bollard  CM,
Oran B, et al. Concise review: umbilical cord blood transplantation: past, present, and future. Stem Cells Transl Med 2014; 3(12): 1435-43.
  1. Lund TC, Boitano AE, Delaney CS, Shpall EJ, Wagner JE. Advances in umbilical cord blood manipulation--from niche to bedside. Nat Rev Clin Oncol 2015; 12(3): 163-74.
  2. Mehta RS, Dave H, Bollard CM, Shpall EJ. Engineering cord blood to improve engraftment after cord blood transplant. Stem Cell Investig 2017; 4: 41.
  3. Sideri A, Neokleous N, De La Grange PB, Guerton B, Kerdilles M-CLB, Uzan G, et al. An overview of the progress on double umbilical cord blood transplantation. Haematologica 2011; 96(8): 1213-20.
  4. Barker J, Weisdorf D, Wagner J. Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 2001; 344(24): 1870-1.
  5. Scaradavou A, Brunstein CG, Eapen M, Le-Rademacher J, Barker JN, Chao N, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood 2013; 121(5): 752-8.
  6. Labopin M, Ruggeri A, Gorin NC, Gluckman E, Blaise D, Mannone L, et al. Cost-effectiveness and clinical outcomes of double versus single cord blood transplantation in adults with acute leukemia in France. Haematologica 2014; 99(3): 535-40.
  7. Ramirez P, Wagner JE, DeFor TE, Blazar BR, Verneris MR, Miller JS, et al. Factors predicting single-unit predominance after double umbilical cord blood transplantation. Bone Marrow Transplant 2012; 47(6): 799.
  8. Magro E, Regidor C, Cabrera R, Sanjuán I, Forés R, García-Marco JA, et al. Early hematopoietic recovery after single unit unrelated cord blood transplantation in adults supported by co-infusion of mobilized stem cells from a third party donor. Haematologica 2006; 91(5): 640-8.
  9. Bautista G, Cabrera J, Regidor C, Fores R, Garcia-Marco J, Ojeda E, et al. Cord blood transplants supported by co-infusion of mobilized hematopoietic stem cells from a third-party donor. Bone Marrow Transplant 2009; 43(5): 365.
  10. Liu H, Rich ES, Godley L, Odenike O, Joseph L, Marino S, et al. Reduced-intensity conditioning with combined haploidentical and cord blood transplantation results in rapid engraftment, low GVHD, and durable remissions. Blood 2011; 118(24): 6438-45.
  11. Sanchez ME, Ponce DM, Lauer E, Lubin M, Barone J, Byam C, et al. Double-unit cord blood (CB) transplantation (DCBT) combined with haplo-identical peripheral blood CD34+ cells (HaploCD34+) is associated with enhanced neutrophil recovery, universal haplo rejection, and frequent pre-engraftment syndrome. Blood 2014; 124(21): 3903.
  12. Kosuri S, Wolff T, Devlin SM, Byam C, Mazis CM, Naputo K, et al. Prospective evaluation of unrelated donor cord blood and haploidentical donor access reveals graft availability varies by patient ancestry: practical implications for donor selection. Biol Blood Marrow Transplant 2017; 23(6): 965-70.
  13. Mayani H, Wagner JE, Broxmeyer HE. Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplant 2020; 55(1): 48-61.
  14. Mayani  H,  Dragowska  W,  Lansdorp  PM.  Cytokine-
induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 1993; 81(12): 3252-8.
  1. Cardoso AA, Li ML, Batard P, Hatzfeld A, Brown EL, Levesque JP, et al. Release from quiescence of CD34+ CD38-human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci U S A 1993; 90(18): 8707-11.
  2. Cicuttini F, Welch K, Boyd A. The effect of cytokines on CD34+ Rh-123high and low progenitor cells from human umbilical cord blood. Exp Hematol 1994; 22(13): 1244-51.
  3. Mayani H, Lansdorp PM. Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 1994; 83(9): 2410-7.
  4. Mayani H, Lansdorp P. Proliferation of individual hematopoietic progenitors purified from umbilical cord blood. Exp Hematol 1995; 23(14): 1453-62.
  5. De Wynter EA, Nadali G, Coutinho LH, Testa NG. Extensive amplification of single cells from CD34+ subpopulations in umbilical cord blood and identification of long-term culture-initiating cells present in two subsets. Stem Cells 1996; 14(5): 566-76.
  6. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J, et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 1997; 89(8): 2644-53.
  7. Scadden DT. The stem-cell niche as an entity of action. Nature 2006; 441(7097): 1075-9.
  8. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132(4): 598-611.
  9. Nagasawa T, Omatsu Y, Sugiyama T. Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol 2011; 32(7): 315-20.
  10. Rosler E, Brandt J, Chute J, Hoffman R. Cocultivation of umbilical cord blood cells with endothelial cells leads to extensive amplification of competent CD34+ CD38− cells. Exp Hematol 2000; 28(7): 841-52.
  11. Robinson S, Ng J, Niu Te, Yang H, McMannis J, Karandish S, et al. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 2006; 37(4): 359.
  12. Fei X, Wu Y, Chang Z, Miao K, Tang Y, Zhou X, et al. Co-culture of cord blood CD34+ cells with human BM mesenchymal stromal cells enhances short-term engraftment of cord blood cells  in  NOD/SCID  mice.
Cytotherapy 2007; 9(4): 338-47.
  1. Flores-Guzmán P, Flores-Figueroa E, Montesinos JJ, Martínez-Jaramillo G, Fernández-Sánchez V, Valencia-Plata I, et al. Individual and combined effects of mesenchymal stromal cells and recombinant stimulatory cytokines on the in vitro growth of primitive hematopoietic cells from human umbilical cord blood. Cytotherapy 2009; 11(7): 886-96.
  2. Peled T, Mandel J, Goudsmid R, Landor C, Hasson N, Harati D, et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 2004; 6(4): 344-55.
  3. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16(2): 232.
  4. Fernández-Sánchez V, Pelayo R, Flores-Guzmán P, Flores-Figueroa E, Villanueva-Toledo J, Garrido E, et al. In vitro effects of stromal cells expressing different levels of Jagged-1 and Delta-1 on the growth of primitive and intermediate CD34+ cell subsets from human cord blood. Blood Cells Mol Dis 2011; 47(4): 205-13.
  5. Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer N, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol 2012; 40(4): 342-55. e1.
  6. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010; 329(5997): 1345-8.
  7. Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, et al. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 2014; 345(6203): 1509-12.
  8. Huang X, Lee M-R, Cooper S, Hangoc G, Hong K-S, Chung H-M, et al. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression. Leukemia 2016; 30(1): 144.
  9. Guo B, Huang X, Lee MR, Lee SA, Broxmeyer HE. Antagonism of PPAR-γ signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med 2018; 24(3): 360.
  10. Chaurasia P, Gajzer DC, Schaniel C, D’Souza S, Hoffman R. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest 2014; 124(6): 2378-95.
  11. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB, et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 2002; 8(7): 368-76.
  12. Jaroscak J, Goltry K, Smith A, Waters-Pick B, Martin
PL, Driscoll TA, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo–expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood 2003; 101(12): 5061-7.
  1. De  Lima  M,  McMannis  J,  Gee  A,   Komanduri   K,
Couriel   D,  Andersson  B, et al.  Transplantation of  
ex vivo expanded cord blood cells using the copper
chelator tetraethylenepentamine: a phase I/II clinical
trial. Bone Marrow Transplant 2008; 41(9): 771.
  1. De Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 2012; 367(24): 2305-15.
  2. Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 2014; 124(7): 3121-8.
  3. Wagner Jr JE, Brunstein CG, Boitano AE, DeFor TE, McKenna D, Sumstad D, et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 2016; 18(1): 144-55.
  4. Dircio-Maldonado R, Flores-Guzman P, Corral-Navarro J, Mondragón-García I, Hidalgo-Miranda A, Beltran-Anaya FO, et al. Functional Integrity and Gene Expression Profiles of Human Cord Blood-Derived Hematopoietic Stem and Progenitor Cells Generated In Vitro. Stem Cells Transl Med 2018; 7(8): 602-14.
  5. Horwitz ME, Wease S, Blackwell B, Valcarcel D, Frassoni F, Boelens JJ, et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol 2019; 37(5): 367.
  6. Heazlewood SY, Oteiza A, Cao H, Nilsson SK. Analyzing hematopoietic stem cell homing, lodgment, and engraftment to better understand the bone marrow niche. Ann N Y Acad Sci 2014; 1310(1): 119-28.
  7. Broxmeyer HE. Enhancing the efficacy of engraftment of cord blood for hematopoietic cell transplantation. Transfus Apher Sci 2016; 54(3): 364-72.
  8. Van Os R, Ausema A, Dontje B, van Riezen M, van Dam G, de Haan G. Engraftment of syngeneic bone marrow is not more efficient after intrafemoral transplantation than after traditional intravenous administration. Exp Hematol 2010; 38(11): 1115-23.
  9. Brunstein C, Barker J, Weisdorf D, Defor T, McKenna D, Chong S, et al. Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant 2009; 43(12): 935.
  10. Frassoni F, Varaldo R, Gualandi F, Bacigalupo A, Sambuceti G, Sacchi N, et al. The intra-bone marrow injection of cord blood cells extends the possibility of transplantation to the majority of patients with malignant hematopoietic diseases. Best Pract Res Clin Haematol 2010; 23(2): 237-44.
  11. Christopherson K, Hangoc G, Broxmeyer H. Cell surface peptidase CD26 / DPPIV regulates CXCL12 / SDF-1α mediated chemotaxis of human CD34+ progenitor cells. J Immunol 2002; 169: 7000-8.
  12. Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305(5686): 1000-3.
  13. Farag SS, Srivastava S, Messina-Graham S, Schwartz J, Robertson MJ, Abonour R, et al. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological
malignancies. Stem Cells Dev 2012; 22(7): 1007-15.
  1. De Mendizábal NV, Strother RM, Farag SS, Broxmeyer HE, Messina-Graham S, Chitnis SD, et al. Modelling the sitagliptin effect on dipeptidyl peptidase-4 activity in adults with haematological malignancies after umbilical cord blood haematopoietic cell transplantation. Clin Pharmacokinet 2014; 53(3): 247-59.
  2. Farag SS, Nelson R, Cairo MS, O’Leary HA, Zhang S, Huntley C, et al. High-dose sitagliptin for systemic inhibition of dipeptidylpeptidase-4 to enhance engraftment of single cord umbilical cord blood transplantation. Oncotarget 2017; 8(66): 110350.
  3. Xia L, McDaniel JM, Yago T, Doeden A, McEver RP. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 2004; 104(10): 3091-6.
  4. Popat U, Mehta RS, Rezvani K, Fox P, Kondo K, Marin D, et al. Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation. Blood 2015; 125(19): 2885-92.
  5. Pelus LM, Broxmeyer HE, Kurland J, Moore MA. Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferrin. J Exp Med 1979; 150(2): 277-92.
  6. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007; 447(7147): 1007.
  7. Hoggatt J, Singh P, Sampath J, Pelus LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009; 113(22): 5444-55.
  8. Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 2013; 122(17): 3074-81.
  9. Lee CJ, Savani BN, Mohty M, Labopin M, Ruggeri A, Schmid C, et al. Haploidentical hematopoietic cell transplantation for adult acute myeloid leukemia: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica 2017; 102(11): 1810-22.
  10. Bart T. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells. Clinicoecon Outcomes Res 2010; 2: 141-7.
  11. Majhail NS, Mothukuri JM, MacMillan ML, Verneris MR, Orchard PJ, Wagner JE, et al. Costs of pediatric allogeneic hematopoietic-cell transplantation. Pediatr Blood Cancer 2010; 54(1): 138-43.
  12. Broxmeyer HE, Farag S. Background and future considerations for human cord blood hematopoietic cell transplantation, including economic concerns. Stem Cells Dev 2013; 22(S1): 103-10.
  13. Bari S, Zhong Q, Fan X, Poon Z, Lim AST, Lim TH, et al. Ex Vivo Expansion of CD34+ CD90+ CD49f+ Hematopoietic Stem and Progenitor Cells from Non-Enriched Umbilical Cord Blood with Azole Compounds. Stem Cells Transl Med 2018; 7(5): 376-93.
  14. Mokhtari S, Baptista PM, Vyas DA, Freeman CJ, Moran E, Brovold M, et al. Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments. Stem Cells  Transl Med 2018; 7(3): 271-82.
  15. Csaszar E, Kirouac DC, Yu M, Wang W, Qiao W, Cooke MP, et al. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 2012; 10(2): 218-29.
  16. Kurtzberg J, Buntz S, Gentry T, Noeldner P, Ozamiz A, Rusche B, et al. Preclinical characterization of DUOC-01, a cell therapy product derived from banked umbilical cord blood for use as an adjuvant to umbilical cord blood transplantation for treatment of inherited metabolic diseases. Cytotherapy 2015; 17(6): 803-15.
  17. Sun JM, Kurtzberg J. Cell therapy for diverse central nervous system disorders: inherited metabolic diseases and autism. Pediatr Res 2018; 83(1-2): 364.
  18. Saha A, Buntz S, Scotland P, Xu L, Noeldner P, Patel S, et al. A cord blood monocyte-derived cell therapy product accelerates brain remyelination. JCI Insight 2016; 1(13): e86667.
  19. Achyut BR, Varma NRS, Arbab AS. Application of umbilical cord blood derived stem cells in diseases of the nervous system. J Stem Cell Res Ther 2014; 4.
  20. Titomanlio L, Kavelaars A, Dalous J, Mani S, El Ghouzzi V, Heijnen C, et al. Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 2011; 70(5): 698-712.
  21. Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17(7): 837-51.
  22. Chez M, Lepage C, Parise C, Dang-Chu A, Hankins A, Carroll M. Safety and observations from a placebo-controlled, crossover study to assess use of autologous umbilical cord blood stem cells to improve symptoms in children with autism. Stem Cells Transl Med 2018; 7(4): 333-41.
  23. Carpenter KL, Major S, Tallman C, Chen LW, Franz L, Sun J, et al. White Matter Tract Changes Associated with Clinical Improvement in an Open-Label Trial Assessing Autologous Umbilical Cord Blood for Treatment of Young Children with Autism. Stem Cells Transl Med 2019; 8(2): 138-47.
  24. Laskowitz DT, Bennett ER, Durham RJ, Volpi JJ, Wiese JR, Frankel M, et al. Allogeneic umbilical cord blood infusion for adults with ischemic stroke: clinical outcomes from a phase I safety study. Stem Cells Transl Med 2018; 7(7): 521-9.
  25. Park EH, Lim Hs, Lee S, Roh K, Seo KW, Kang KS, et al. Intravenous Infusion of Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Rheumatoid Arthritis: A Phase Ia Clinical Trial. Stem Cells Transl Med 2018; 7(9): 636-42.
  26. Huang L, Zhang C, Gu J, Wu W, Shen Z, Zhou X, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children  with  cerebral palsy. Cell Transplant 2018;
27(2): 325-34.
  1. Abo-Elkheir W, Hamza F, Elmofty AM, Emam A, Abdl-Moktader M, Elsherefy S, et al. Role of cord blood and bone marrow mesenchymal stem cells in recent deep burn: a case-control prospective study. Am J Stem Cells 2017; 6(3): 23-35.
  2. Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-year follow-up outcomes of premature infants enrolled in the phase I trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia. J Pediatr 2017; 185: 49-54. e2.
  3. Kim HS, Lee JH, Roh KH, Jun HJ, Kang KS, Kim TY. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies. Stem Cells 2017; 35(1): 248-55.
  4. Mattar P, Bieback K. Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells. Front Immuno 2015; 6: 560.
  5. Mukai T, Nagamura-Inoue T, Shimazu T, Mori Y, Takahashi A, Tsunoda H, et al. Neurosphere formation enhances the neurogenic differentiation potential and migratory ability of umbilical cord-mesenchymal stromal cells. Cytotherapy 2016; 18(2): 229-41.
  6. Donders R, Bogie JF, Ravanidis S, Gervois P, Vanheusden M, Marée R, et al. Human Wharton's Jelly-derived stem cells display a distinct immunomodulatory and proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells Dev 2018; 27(2): 65-84.
  7. Zeinali R, Biazar E, Keshel SH, Tavirani MR, Asadipour K. Regeneration of full-thickness skin defects using umbilical cord blood stem cells loaded into modified porous scaffolds. ASAIO J 2014; 60(1): 106-14.
  8. Giorgetti A, Marchetto MC, Li M, Yu D, Fazzina R, Mu Y, et al. Cord blood-derived neuronal cells by ectopic expression of Sox2 and c-Myc. Proc Natl Acad Sci U S A 2012; 109(31): 12556-61.
  9. Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodríguez-Pizà I, Vassena R, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 2009; 5(4): 353.
  10. Lee MR, Prasain N, Chae HD, Kim YJ, Mantel C, Yoder MC, et al. Epigenetic regulation of Nanog by MiR-302 cluster-MBD2 completes induced pluripotent stem cell reprogramming. Stem Cells 2013; 31(4): 666-81.
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sci J Iran Blood Transfus Organ 2020;17 (3); 226-241
Review  Article
 
 
 

Advances and challenges in storage, transplantation,
expansion and homing of Umbilical Cord Blood
Hematopoietic Stem Cells (UCB-HSCs)
 
Niazi V.1, Heidari Keshel S.1, Shahbazi M.2
 
 
 
1Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
 
 
 
Abstract
Background and Objectives
Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have high potential capabilities in the treatment of hematological and non-hematological disorders. Awareness of biology, self-renewal, homing, expansion, storage, and transplantation can lead to optimal use of these cells.
 
Materials and Methods
In this Review article in order to investigate the advances and challenges in cord blood banks, the expansion, storage, homing and transplantation of umbilical cord blood stem cells, we used key words like umbilical cord blood, hematopoietic stem cells and stem cell banks for searching published articles in the PubMed database during 2000 to 2020.
 
Results
Over time, many advances in biology, expansion, storage, and transplantation of cord blood cells have been made by researchers around the world with a growth in the number of private and public cord blood banks in parallel. Despite these advances, there are still challenges to the optimal use of these cells.
 
Conclusions 
Increasing our awareness about the achievements and shortcomings in the area of UCB-HSCs, can lead to the formation of new strategies and further studies for the optimal use of these cells.
 
Key words: Umbilical Cord Blood, Hematopoietic Stem Cells, Transplantation
 
 
 
 
 
 
 
Received:   1  Jan  2020
Accepted: 18 May 2020
 
 

Correspondence: Heidari Keshel S., PhD of Proteomics. Assistant Professor of Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences.
Postal Code: 1985711151, Tehran, Iran. Tel: (+9821) 22714248;  Fax: (+9821) 22714248
E-mail: saeedhey@gmail.com
Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Niazi V, heydari Keshel S, Shahbazi M. Advances and challenges in storage, transplantation, expansion and homing of Umbilical Cord Blood Hematopoietic Stem Cells (UCB-HSCs). Sci J Iran Blood Transfus Organ 2020; 17 (3) :226-241
URL: http://bloodjournal.ir/article-1-1324-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 17, Issue 3 (Autumn 2020) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.95 seconds with 39 queries by YEKTAWEB 4645