[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 15, Issue 2 (Summer 2018) ::
Sci J Iran Blood Transfus Organ 2018, 15(2): 133-143 Back to browse issues page
The Significance of Ubiquitin-Proteasome Pathway in Glucocorticoid Resistance Development in Acute Lymphoblastic Leukemia
N. Dehghan Nayeri , P. Eshghi , K. Goudarzi pour , M. Darvishi , َ. Gharehbaghian
Keywords: Key words: Lymphoblastic Leukemia, Acute, Drug Resistance, Glucocorticoids, Biomarkers
Full-Text [PDF 1112 kb]   (2808 Downloads)     |   Abstract (HTML)  (4643 Views)
Type of Study: Research | Subject: Hematology and Oncology
Published: 2018/06/15
Full-Text:   (7009 Views)
   References:
  1.  Carroll WL, Raetz EA. Clinical and laboratory biology of childhood acute lymphoblastic leukemia. J Pediatr 2012; 160(1): 10-8.
  2. Cooper SL, Brown PA. Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am 2015; 62(1): 61-73.
  3. Lin KT, Wang LH. New dimension of glucocorticoids in cancer treatment. Steroids 2016; 111: 84-8.
  4. Greenstein S, Ghias K, Krett NL, Rosen ST. Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res 2002; 8(6): 1681-94.
  5. Linka Y, Ginzel S, Krüger M, Novosel A, Gombert M, Kremmer E, et al. The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood Cancer J 2013; 3(10): e151.
  6. Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol 2010; 11(11): 1096-106.
  7. Möricke A, Lauten M, Beier R, Odenwald E, Stanulla M, Zimmermann M, et al. Prediction of outcome by early response in childhood acute lymphoblastic leukemia. Klin Pädiatr 2013; 225(S 01): S50-6.
  8. Jiang  N,  Kham  SKY,  Koh  GS, Lim JYS, Ariffin H,
 
 
 
 
 
Chew FT, et al. Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J Proteomics 2011; 74(6): 843-57.
  1. Dehghan-Nayeri N, Rezaei-Tavirani M, Omrani MD, Gharehbaghian A, Pour KG, Eshghi P. Identification of potential predictive markers of dexamethasone resistance in childhood acute lymphoblastic leukemia. J Cell Commun Signal 2017; 11(2): 137-45.
  2. Dehghan-Nayeri N, Eshghi P, Pour KG, Rezaei-Tavirani M, Omrani MD, Gharehbaghian A. Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2017; 80(1): 177-85.
  3. Tissing W, Lauten M, Meijerink J, den Boer ML, Koper JW, Sonneveld P, et al. Expression of the glucocorticoid receptor and its isoforms in relation to glucocorticoid resistance in childhood acute lymphocytic leukemia. Haematologica 2005; 90(9): 1279-81.
  4. Tissing WJ, Meijerink JP, den Boer ML, Brinkhof B, van Rossum EF, van Wering ER, et al. Genetic variations in the glucocorticoid receptor gene are not related to glucocorticoid resistance in childhood acute lymphoblastic leukemia. Clin Cancer Res 2005; 11(16): 6050-6.
  5. Lewis-Tuffin LJ, Cidlowski JA. The physiology of human glucocorticoid receptor β (hGRβ) and glucocorticoid resistance. Ann N Y Acad Sci 2006; 1069(1): 1-9.
  6. Shahidi H, Vottero A, Stratakis CA, Taymans SE, Karl M, Longui CA, et al. Imbalanced expression of the glucocorticoid receptor isoforms in cultured lymphocytes from a patient with systemic glucocorticoid resistance and chronic lymphocytic leukemia. Biochem Biophys Res Commun 1999; 254(3): 559-65.
  7. He X, Zhang P. Serine/arginine-rich splicing factor 3 (SRSF3) regulates homologous recombination-mediated DNA repair. Mol Cancer 2015; 14(1): 158.
  8. Calcaterra NB, Armas P, Weiner AM, Borgognone M. CNBP: a multifunctional nucleic acid chaperone involved in cell death and proliferation control. IUBMB Life 2010; 62(10): 707-14.
  9. Yip YY, Yeap YY, Bogoyevitch MA, Ng DC. cAMP-dependent protein kinase and c-Jun N-terminal kinase mediate stathmin phosphorylation for the maintenance of interphase microtubules during osmotic stress. J Biol Chem 2014; 289(4): 2157-69.
  10. Schmidt M, Finley D. Regulation of proteasome activity in health and disease. Biochim Biophys Acta 2014; 1843(1): 13-25.
  11. Mi N, Chen Y, Wang S, Chen M, Zhao M, Yang G, et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 2015; 17(9): 1112-23.
  12. Miyoshi N, Ishii H, Mimori K, Nishida N, Tokuoka M, Akita H, et al. Abnormal expression of PFDN4 in colorectal cancer: a novel marker for prognosis. Ann
    Surg Oncol 2010; 17(11): 3030-6.
  13. Averaimo S, Milton RH, Duchen MR, Mazzanti M. Chloride intracellular channel 1 (CLIC1): Sensor and effector during oxidative stress. FEBS Lett 2010; 584(10): 2076-84.
  14. Overduin M, Rajesh S, Gruenberg J, Lenoir M. Secondary structure and 1H, 13C, 15N resonance assignments of the endosomal sorting protein sorting nexin 3. Biomol NMR Assign 2015; 9(2): 355-8.
  15. Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim Biophys Acta 2015; 1848(10 Pt B): 2547-75.
  16. Giuliani P, Zuccarini M, Buccella S, Rossini M, D’Alimonte I, Ciccarelli R, et al. Development of a new HPLC method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010: 114-21.
  17. Ladner RD. The role of dUTPase and uracil-DNA repair in cancer chemotherapy. Curr Protein Pept Sci 2001; 2(4): 361-70.
  18. Ghigna C, Valacca C, Biamonti G. Alternative splicing and tumor progression. Curr Genomics 2008; 9(8): 556-70.
  19. Shkreta L, Froehlich U, Paquet ER, Toutant J, Elela SA, Chabot B. Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes. Mol Cancer Ther 2008; 7(6): 1398-409.
  20. Yin F, Liu X, Li D, Wang Q, Zhang W, Li L. Tumor suppressor genes associated with drug resistance in ovarian cancer. Oncol Rep 2013; 30(1): 3-10.
 
 
 
 
 


 
 
 
 
Sci J Iran Blood Transfus Organ 2018; 15(2): 133-143
Original Article
 

 

The Significance of Ubiquitin-Proteasome Pathway in Glucocorticoid Resistance Development in Acute
Lymphoblastic Leukemia
 
Dehghan-Nayeri N.1, Eshghi P.2,3, Goudarzi Pour K.2,3, Darvishi M.1, Gharehbaghian A.1,2
 
 
1School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Mofid Children's Hospital, Tehran, Iran
 
Abstract
Background and Objectives
ALL is the most common malignancy in childhood. Presently, approximately 20% of patients do not respond to treatment due to the resistance of leukemia blasts. Response to GCs is considered as the strongest independent factor in predicting ALL patients outcome. Therefore, identification of GCs resistance markers are the beneficial tools for improvement of prognostic strategies in ALL.
 
Materials and Methods
In this experimental study,  the protein-protein interaction network of fourteen significant down or up-regulated proteins in the proteome of human lymphoblastic cell treated with prednisolone and dexamethasone were analyzed by using the STRING online database.
 
Results
By using proteomics methods, fourteen down or up-regulated proteins, SRSF3, CNBP, VDAC1, SNX3, PFDN6, PSMB2, STMN1, PPP4R4, DUT, CAPZA1, CAPZB, PNP, CLIC1 and PSME1 were recognized in both the sensitive and resistant GC cell lines. Correlation between these proteins were analyzed by using the STRING database.
 
Conclusions 
Overall, the findings showed that the Ubiquitin-Proteasome pathway plays a pivotal role in inducing resistance to GC in ALL. Therefore, the study of key controlling proteins in this pathway can play an important role in clarifying the mechanisms of induction of resistance to GC and consequently the prognosis of the disease.
 
Key words: Lymphoblastic Leukemia، Acute, Drug Resistance, Glucocorticoids, Biomarkers
 
 
 
 
 
 
 
Received: 4  Feb 2018
Accepted: 9 May 2018
 
 

Correspondence: Gharehbaghian A., PhD in Clinical Immunohematology. School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences and Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences.
P.O.Box: 15468-15514, Tehran, Iran. Tel: (+9821) 22721150; Fax: (+9821) 22731999
E-mail: gharehbaghian@sbmu.ac.ir
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghan Nayeri N, Eshghi P, Goudarzi pour K, Darvishi M, Gharehbaghian َ. The Significance of Ubiquitin-Proteasome Pathway in Glucocorticoid Resistance Development in Acute Lymphoblastic Leukemia. Sci J Iran Blood Transfus Organ 2018; 15 (2) :133-143
URL: http://bloodjournal.ir/article-1-1179-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 15, Issue 2 (Summer 2018) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4645