[Home ] [Archive]   [ فارسی ]  
:: Main :: About us :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Subscription::
News& Events::
Contact us::
Site Facilities::
Ethics & Permissions::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing
                        
..
:: Volume 14, Issue 3 (Atumn 2017) ::
Sci J Iran Blood Transfus Organ 2017, 14(3): 237-248 Back to browse issues page
The Application of Mesenchymal Stem Cell-Derived Vesicles in Regenerative Medicine
D. Pashoutan Sarvar , K. Shamsasenjan , P. Akbarzadehlaleh , A.A. Movassaghpour , Hamze Timari , Sara Aqmasheh
Keywords: Key words: Regenerative Medicine, Cell Therapy, Mesenchymal Stem Cells, Extracellular Vesicles
Full-Text [PDF 351 kb]   (4747 Downloads)     |   Abstract (HTML)  (5770 Views)
Type of Study: Review Article | Subject: Stem cells
Published: 2017/09/12
Full-Text:   (4140 Views)
References:
 
  1. Kariminekoo S, Movassaghpour A, Rahimzadeh A, Talebi M, Shamsasenjan K, Akbarzadeh A. Implications of mesenchymal stem cells in regenerative medicine. Artif Cells Nanomed Biotechnol 2016; 44(3): 749-57.
  2. Gallina C, Turinetto V, Giachino C. A New Paradigm in Cardiac Regeneration: The Mesenchymal Stem Cell Secretome. Stem Cells Int 2015; 2015: 765846.
  3. Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, et al. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 2009; 126(2): 220-32.
  4. Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med 2012; 18(2): 128-34.
  5. Lotfinegad P, Shamsasenjan K, Movassaghpour A, Majidi J, Baradaran B. Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy. Adv Pharm Bull 2014; 4(1): 5-13.
  6. Kellner J, Sivajothi S, McNiece I. Differential properties of human stromal cells from bone marrow, adipose, liver and cardiac tissues. Cytotherapy 2015; 17(11): 1514-23.
  7. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
  8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  9. Li T, Wu Y. Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche. Differentiation 2011; 2011(29): 34-42.
  10. Curley GF, Ansari B, Hayes M, Devaney J, Masterson C, Ryan A, et al. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury. Anesthesiology 2013; 118(4): 924-32.
  11. Reinshagen H, Auw-Haedrich C, Sorg RV, Boehringer D, Eberwein P, Schwartzkopff J, et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental  limbal   stem   cell   deficiency in rabbits. Acta Ophthalmol 2011; 89(8): 741-8.
  12. Djouad F, Bouffi C, Ghannam S, Noel D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 2009; 5(7): 392-9.
  13. Lotfinegad P, Shamsasenjan K, Movassaghpour A, Majidi J, Baradaran B. Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy. Adv Pharm Bull 2014; 4(1): 5-13.
  14. Li T, Wu Y. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res 2011; 2011: 353878.
  15. Mehrasa R, Vaziri H, Oodi A, Khorshidfar M, Nikogoftar M, Golpour M, et al. Mesenchymal stem cells as a feeder layer can prevent apoptosis of expanded hematopoietic stem cells derived from cord blood. Int J Mol Cell Med 2014; 3(1): 1-10.
  16. Bruno S, Collino F, Tetta C, Camussi G. Dissecting paracrine effectors for mesenchymal stem cells. Adv Biochem Eng Biotechnol 2013; 129: 137-52.
  17. Wang KX, Xu LL, Rui YF, Huang S, Lin SE, Xiong JH, et al. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS One 2015; 10(3): e0120593.
  18. Breakefield XO, Frederickson RM, Simpson RJ. Gesicles: Microvesicle "cookies" for transient information transfer between cells. Mol Ther 2011; 19(9): 1574-6.
  19. Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci 2013; 14(7): 14240-69.
  20. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
  21. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007; 179(3): 1969-78.
  22. Bruschi M, Ravera S, Santucci L, Candiano G, Bartolucci M, Calzia D, et al. The human urinary exosome as a potential metabolic effector cargo. Expert Rev Proteomics 2015; 12(4): 425-32.
  23. Qiu S, Duan X, Geng X, Xie J, Gao H. Antigen-specific activities of CD8+ T cells in the nasal mucosa of patients with nasal allergy. Asian Pac J Allergy Immunol 2012; 30(2): 107-13.
  24. Saman S, Kim W, Raya M, Visnick Y, Miro S, Saman S, et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J Biol Chem 2012; 287(6): 3842-9.
  25. Hyun KA, Kim J, Gwak H, Jung HI. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst 2016; 141(2): 382-92.
  26. Soung YH, Nguyen T, Cao H, Lee J, Chung J. Emerging roles of exosomes in cancer invasion and metastasis. BMB Rep 2016; 49(1): 18-25.
  27. Tang H, Wu H, Yang Y, Zhao J, Chen J. Progress in study on the role of exosome-derived microRNA in diagnosis and treatment of diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015; 40(11): 1270-5. [Article in Chinese]
  28. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73(10): 1907-20.
  29. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 2012; 40(D1): D1241-4.
  30. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 2012; 10(12): e1001450.
  31. Wickman G, Julian L, Olson MF. How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ 2012; 19(5): 735-42.
  32. Zeringer E, Barta T, Li M, Vlassov AV. Strategies for isolation of exosomes. Cold Spring Harb Protoc 2015; 2015(4): 319-23.
  33. Wang R, Lin M, Li L, Li L, Qi G, Rong R, et al. Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats. Zhonghua Yi Xue Za Zhi 2014; 94(42): 3298-303. [Article in Chinese]
  34. Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A, Hass R. Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol 2015; 47(1): 244-52.
  35. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 2010; 38(1): 215-24.
  36. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51(8): 2105-20.
  37. Yoon YJ, Kim OY, Gho YS. Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 2014; 47(10): 531-9.
  38. Savina A, Furlan M, Vidal M, Colombo MI. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 2003; 278(22): 20083-90.
  39. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002; 168(7): 3235-41.
  40. Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One 2013; 8(7): e68451.
  41. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 2006; 31(4): 642-8.
  42. Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem 2013; 288(48): 34343-51.
  43. Thery  C,  Amigorena  S,  Raposo   G,    Clayton     A.
Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006; 3(22): 1-29.
  1. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 2015; 1295: 179-209.
  2. Nordin JZ, Lee Y, Vader P, Mager I, Johansson HJ, Heusermann W, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 2015; 11(4): 879-83.
  3. Ban JJ, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun 2015; 461(1): 76-9.
  4. Ge M, Ke R, Cai T, Yang J, Mu X. Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 2015; 467(1): 27-32.
  5. Lopez-Verrilli MA, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury M. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 2016; 320: 129-39.
  6. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 2011; 87(1): 146-50.
  7. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 2016; 18(1): 13-24.
  8. Maumus M, Jorgensen C, Noel D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 2013; 95(12): 2229-34.
  9. Fierabracci A, Del Fattore A, Luciano R, Muraca M, Teti A, Muraca M. Recent advances in mesenchymal stem cell immunomodulation: the role of microvesicles. Cell Transplant 2015; 24(2): 133-49.
  10. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 2010; 78(9): 838-48.
  11. Sun L, Xu R, Sun X, Duan Y, Han Y, Zhao Y, et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy 2016; 18(3): 413-22.
  12. Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol 2015; 40: 82-8.
  13. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl) 2014; 92(4): 387-97.
  14. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 2010; 4(3): 214-22.
  15. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, et al.
Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22(6): 845-54.
  1. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 2013; 10(3): 301-12.
  2. Dorronsoro A, Robbins PD. Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2013; 4(2): 39.
  3. Rager TM, Olson JK, Zhou Y, Wang Y, Besner GE. Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. J Pediatr Surg 2016; 51(6): 942-7.
  4. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94(6): 776-80.
  5. Merino-González C, Zuñiga F, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application. Front Physiol 2016; 7: 24.
  6. Yang Y, Ye Y, Su X, He J, Bai W, He X. MSCs-Derived Exosomes and Neuroinflammation, Neurogenesis and Therapy of Traumatic Brain Injury. Front Cell Neurosci 2017; 11(5): 55.
  7. Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 2015; 589(11): 1257-65.
  8. Raimondo S, Corrado C, Raimondi L, De Leo G, Alessandro R. Role of Extracellular Vesicles in Hematological Malignancies. Biomed Res Int 2015; 2015: 821613-21.
  9. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 2012; 315(1): 28-37.
  10. Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 2013; 8(12): e84256.
  11. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 2013; 33(11): 1711-5.
  12. Jarmalavičiūtė A, Pivoriūnas A. Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol Res 2016; 113(Pt B): 816-22.
  13. Zhang Y, Chopp M, Liu XS, Katakowski M, Wang X, Tian X, et al. Exosomes Derived from Mesenchymal Stromal  Cells  Promote  Axonal  Growth of Cortical
Neurons. Mol Neurobiol 2017; 54(4): 2659-73.
  1. Liu   M,  Wang  J,   Liu   M,   Hu  X,  Xu  J.    Study of
immunomodulatory function of exosomes derived from human umbilical cord mesenchymal stem cells. Zhonghua Yi Xue Za Zhi 2015; 95(32): 2630-3. [Article in Chinese]
  1. Zhang X, Jiao C, Zhao S. Role of mesenchymal stem cells in immunological rejection of organ transplantation. Stem Cell Rev 2009; 5(4): 402-9.
 
 
 


 
 
 
 
Sci J Iran Blood Transfus Organ 2017; 14(3): 237-248
Review  Article
 

 

The Application of Mesenchymal Stem Cell-Derived
Vesicles in Regenerative Medicine
 
Pashoutansarvar D.1, Shamsasenjan K. 2, Akbarzadehlaleh P.3, Movassaghpour A.A.2,
Timari H.1, Aqmasheh S.1
 
 
1Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
3Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
 
 
Abstract
Background and Objectives
Mesenchymal stem cells are pluripotent cells characterized by self-renewal and the stromal multilineage differentiation potency. These cells play an important role in tissue homeostasis through direct cell-cell interaction and release of various growth factors and cytokines. Vesicles derived from mesenchymal stem cells rich in various growth factors such as proteins, cytokines and microRNAs are produced under different physiological or pathological conditions. Differentiation capability of these vesicles in repairing damaged tissues, as well as immune response modulation, has caused the vesicles to be considered as useful and efficient tools in regenerative medicine.
 
Materials and Methods
In the present review study, the authors investigated many articles over the past two decades published on the isolation and characterization of vesicles derived from mesenchymal stem cells, as well as on the application of these vesicles in regenerative medicine.
 
Results
The review of various articles showed that mesenchymal stem cells exert their paracrine effects by secreting different cytokines and vesicles. Mesenchymal stem cell-derived vesicles have protective effects such as regenerating damaged tissues, angiogenesis, neurogenesis, suppression of inflammatory reactions and modulation of immune responses.
 
Conclusions 
Since the vesicles derived stem cells are supplemented with various growth factors and have tissue repairing potency, these vesicles can be used to repair the damaged tissues. In addition, these vesicles can be used as carriers of drugs or genes.
 
Key words: Regenerative Medicine, Cell Therapy, Mesenchymal Stem Cells, Extracellular Vesicles
 
 
 
 
 
Received:  13 Nov 2016
Accepted: 11 Jul  2017
 
 

Correspondence: Shams Asenjan K., PhD of Hematology and Blood Banking. Assistant Professor of Hematology and Oncology Research Center, Tabriz University of Medical Sciences.
P.O.Box: 51335, Tabriz, Iran. Tel: (+98411) 2871515; Fax: (+98411) 2871515
E-mail: k.shams@ibto.ir
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P, Movassaghpour A, Timari H, Aqmasheh S. The Application of Mesenchymal Stem Cell-Derived Vesicles in Regenerative Medicine. Sci J Iran Blood Transfus Organ 2017; 14 (3) :237-248
URL: http://bloodjournal.ir/article-1-1088-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 3 (Atumn 2017) Back to browse issues page
فصلنامه پژوهشی خون Scientific Journal of Iran Blood Transfus Organ
The Scientific Journal of Iranian Blood Transfusion Organization - Copyright 2006 by IBTO
Persian site map - English site map - Created in 0.06 seconds with 39 queries by YEKTAWEB 4645